Representation of Species Composition

  • V. Pawlowsky-Glahn
  • T. Monreal-Pawlowsky
  • J. J. Egozcue
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 187)

Abstract

The Aitchison geometry of the simplex, the sample space of compositional data, allows statistical modelling and analysis of compositions without the problems derived from spurious correlation. Here, it is used to show that it offers an alternative to the de Finetti ternary diagram for representing variability of species composition avoiding the problems typical of a standard analysis of proportions, namely spurious correlation and limitation to three or at most four components. The method is illustrated with data representing the species composition of Free and FAD tuna school sets sampled in the Indian and Atlantic Oceans during the 2002–2008 period by purse seiners.

Keywords

Simplex Ternary diagram Aitchison geometry Tuna Fisheries 

References

  1. 1.
    Aitchison, J.: The statistical analysis of compositional data (with discussion). JRSS Ser. B (Stat. Meth.) 44(2), 139–177 (1982)Google Scholar
  2. 2.
    Aitchison, J.: Principal component analysis of compositional data. Biometrika 70(1), 57–65 (1983)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Aitchison, J.: The Statistical Analysis of Compositional Data (Reprinted in 2003 by The Blackburn Press), p. 416. Chapman & Hall Ltd., London (UK) (1986)Google Scholar
  4. 4.
    Aitchison, J., Greenacre, M.: Biplots for compositional data. JRSS Ser. C (Appl. Stat.) 51(4), 375–392 (2002)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Aitchison, J., Shen, S.M.: Logistic-normal distributions. Some properties and uses. Biometrika 67(2), 261–272 (1980)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Barceló-Vidal, C., Martín-Fernández, J.A., Pawlowsky-Glahn, V.: Mathematical foundations of compositional data analysis. In: Ross, G. (ed.) Proceedings of IAMG 2001 p. 20. Cancun (Mex) (2001)Google Scholar
  7. 7.
    Cannings, C., Edwards, A.W.F.: Natural selection and the de Finetti diagram. Ann. Hum. Genet. 31, 421–428 (1968)CrossRefGoogle Scholar
  8. 8.
    Chayes, F.: On correlation between variables of constant sum. J. Geophys. Res. 65(12), 4185–4193 (1960)CrossRefGoogle Scholar
  9. 9.
    Edwards, A.W.F.: Foundations of Mathematical Genetics, 2nd edn, p. 121. Cambridge University Press (2000). ISBN-13: 978-0521775441Google Scholar
  10. 10.
    Egozcue, J.J., Lovell, D., Pawlowsky-Glahn, V.: Testing compositional association. In: Hron, K., Filzmoser, P., Templ, M. (eds.) Proceedings of CoDaWork 2013, Vorau (AT) (2013). ISBN: 978-3-200-03103-6. 28–36Google Scholar
  11. 11.
    Egozcue, J.J., Pawlowsky-Glahn, V.: CoDa-dendrogram: a new exploratory tool. In: Mateu-Figueras, G., Barceló-Vidal, C. (eds.) Proceedings of CoDaWork 2005, Girona (E) (2005). ISBN: 84-8458-222-1Google Scholar
  12. 12.
    Egozcue, J.J., Pawlowsky-Glahn, V. Simplicial geometry for compositional data. In: Compositional Data Analysis in the Geosciences: From Theory to Practice, Special Publications 264, pp. 145–159. Geological Society of London (2006)Google Scholar
  13. 13.
    Egozcue, J.J., Pawlowsky-Glahn, V., Mateu-Figueras, G., Barceló-Vidal, C.: Isometric logratio transformations for compositional data analysis. Math. Geol. 35(3), 279–300 (2003)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Fonteneau, A., Chassot, E., Ortega-Garcia, S., Delgado de Molina, A., Bez, N.: On the use of the de Finetti ternary diagrams to show the species composition of free and FAD associated tuna schools in the Atlantic and Indian Oceans. Trop. Tunas 65(2), 546–555 (2010)Google Scholar
  15. 15.
    Gabriel, K.R.: The biplot—graphic display of matrices with application to principal component analysis. Biometrika 58(3), 453–467 (1971)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Graffelman, J., Camarena, J.: Graphical tests for Hardy-Weinberg equilibrium based on the ternary plot. Hum. Her. 65, 77–84 (2008). doi:10.1159/000108939 CrossRefGoogle Scholar
  17. 17.
    Howarth, R.J.: Sources for a history of the ternary diagram. British J. Hist. Sci. 29(3), 337–356 (1996)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Lovell, D., Pawlowsky-Glahn, V., Egozcue, J.J.: Have you got things in proportion? A practical strategy for exploring association in high-dimensional compositions. In: Hron, K., Filzmoser, P., Templ, M. (eds.) Proceedings of CoDaWork 2013, Vorau (AT) (2013). ISBN: 978-3-200-03103-6, 100–110Google Scholar
  19. 19.
    Lovell, D., Pawlowsky-Glahn, V., Egozcue, J.J., Marguerat, S., Bähler, J.: Proportionality: a valid alternative to correlation for relative data. PLoS Comput. Biol. 11(3), e1004075 (2015). doi:10.1371/journal.pcbi.1004075 CrossRefGoogle Scholar
  20. 20.
    Martín-Fernández, J.A., Barceló-Vidal, C., Pawlowsky-Glahn, V.: Dealing with zeros and missing values in compositional data sets using nonparametric imputation. Math. Geol. 35(3), 253–278 (2003)CrossRefMATHGoogle Scholar
  21. 21.
    Martín-Fernández, J.A., Palarea, J., Olea, R.: Dealing with zeros. See Pawlowsky-Glahn and Buccianti 2011, 43–58 (2011)Google Scholar
  22. 22.
    Mateu-Figueras, G., Pawlowsky-Glahn, V., Egozcue, J.J.: The normal distribution in some constrained sample spaces. SORT 37(1), 29–56 (2013)MathSciNetMATHGoogle Scholar
  23. 23.
    Mateu-Figueras, G., Pawlowsky-Glahn, V., Egozcue, J.J.: The principle of working on coordinates. See Pawlowsky-Glahn and Buccianti 2011, 31–42 (2011)Google Scholar
  24. 24.
    Palarea-Albaladejo, J., Martín-Fernández, J.A.: A modified EM alr-algorithm for replacing rounded zeros in compositional data sets. Comp. Geosc. 34(8), 2233–2251 (2008)CrossRefGoogle Scholar
  25. 25.
    Palarea-Albaladejo, J., Martín-Fernández, J.A., Gómez-García, J.A.: Parametric approach for dealing with compositional rounded zeros. Math. Geol. 39(7), 625–645 (2007)CrossRefMATHGoogle Scholar
  26. 26.
    Pawlowsky-Glahn, V., Buccianti, A.: Visualization and modeling of subpopulations of compositional data: statistical methods illustrated by means of geochemical data from fumarolic fluids. Int. J. Earth Sci. (Geol. Rundschau) 91(2), 357–368 (2002)CrossRefGoogle Scholar
  27. 27.
    Pawlowsky-Glahn, V., Buccianti, A. (eds.): Compositional Data Analysis: Theory and Applications, p. 378. Wiley & Sons (2011)Google Scholar
  28. 28.
    Pawlowsky-Glahn, V., Egozcue, J.J.: Exploring compositional data with the CoDa-Dendrogram. Austr. J. Stat. 40(1 & 2), 103–113 (2011)Google Scholar
  29. 29.
    Pawlowsky-Glahn, V., Egozcue, J.J.: Geometric approach to statistical analysis on the simplex. SERRA 15(5), 384–398 (2001)MATHGoogle Scholar
  30. 30.
    Pawlowsky-Glahn, V., Egozcue, J.J., Tolosana-Delgado, R.: Modeling and Analysis of Compositional Data. Wiley & Sons, Chichester UK (2015). 272 ppGoogle Scholar
  31. 31.
    Pearson, K.: Mathematical contributions to the theory of evolution. On a form of spurious correlation which may arise when indices are used in the measurement of organs. Proc. R. Soc. Lond. LX, 489–502 (1897)Google Scholar
  32. 32.
    Thió-Henestrosa, S., Daunis-i-Estadella, J., Barceló-Vidal, C.: Exploratory compositional data analysis using CoDaPack 3D. See Pawlowsky-Glahn and Buccianti 2011, 329–340 (2011)Google Scholar
  33. 33.
    Thió-Henestrosa, S., Egozcue, J.J., Pawlowsky-Glahn, V., Kovács, L.Ó., Kovács, G.: Balance-dendrogram. A new routine of CoDaPack. Comp. Geosc. 34(12), 1682–1696 (2008)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • V. Pawlowsky-Glahn
    • 1
  • T. Monreal-Pawlowsky
    • 2
  • J. J. Egozcue
    • 3
  1. 1.Department of Computer Science, Applied Mathematics, and StatisticsUniversity of GironaGironaSpain
  2. 2.IZVGKeighleyUK
  3. 3.Department of Civil and Environmental EngineeringTechnical University of CataloniaBarcelonaSpain

Personalised recommendations