Rapid Prototyping for the Engineering of Osteochondral Tissues

  • Alessandra Marrella
  • Marta Cavo
  • Silvia ScaglioneEmail author
Part of the Studies in Mechanobiology, Tissue Engineering and Biomaterials book series (SMTEB, volume 21)


The reconstruction of complex joints represents one of the major challenges in Tissue Engineering, whose aim is to realize bioactive 3D grafts interacting with the articular environment while providing structural and mechanical functionality. Due to the complex hierarchical structure and the co-existence of several architectural organizations of natural articular tissue, a series of chemical-physical-biological features have to be carefully controlled and defined for a best tuning of the mechanical and functional properties of osteochondral tissues. However, the control over scaffold architecture using conventional manufacturing techniques is highly process dependent rather than design dependent. As a result, in the last years Rapid Prototyping (RP) techniques are proposed as promising alternative for 3D porous scaffolds fabrication, opening the possibility to realize engineered grafts with defined and reproducible complex internal structures, for an enhanced cellular response in vivo; moreover, implantable personalized articular tissue materials may be created individually for each patient according to the orthopedic requirements. In this Chapter, we will expose the major RP-based techniques, among them laser-, nozzled- and printed-based RP methods, with particular reference to the most cogent works in the field of joints repair.


Rapid Prototype Fuse Deposition Modeling Rapid Prototype Technique Rapid Prototype Technology Ceramic Scaffold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Nesic D, Whiteside R, Brittberg M, Wendt D, Martin I, Mainil-Varlet P (2006) Cartilage tissue engineering for degenerative joint disease. Adv Drug Deliv Rev 58(2):300–322CrossRefGoogle Scholar
  2. 2.
    Temenoff JS, Mikos AG (2000) Review: tissue engineering for regeneration of articular cartilage. Biomaterials 21(5):431–440CrossRefGoogle Scholar
  3. 3.
    Martin I, Miot S, Barbero A, Jakob M, Wendt D (2007) Osteochondral tissue engineering. J Biomech 40(4):750–765. doi: 10.1016/j.jbiomech.2006.03.008 CrossRefGoogle Scholar
  4. 4.
    Buckwalter JA, Mankin HJ (1997) Articular cartilage: degeneration and osteoarthritis, repair, regeneration, and transplantation. Instr Course Lect 47:487–504Google Scholar
  5. 5.
    O’Driscoll SW (1998) Current concepts review-the healing and regeneration of articular cartilage*. J Bone Joint Surg 80(12):1795–1812Google Scholar
  6. 6.
    Oliveira JM, Rodrigues MT, Silva SS, Malafaya PB, Gomes ME, Viegas CA, Dias IR, Azevedo JT, Mano JF, Reis RL (2006) Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: scaffold design and its performance when seeded with goat bone marrow stromal cells. Biomaterials 27(36):6123–6137CrossRefGoogle Scholar
  7. 7.
    Buckwalter JA (1998) Articular cartilage: injuries and potential for healing. J Orthop Sports Phys Ther 28(4):192–202CrossRefGoogle Scholar
  8. 8.
    Redman SN, Oldfield SF, Archer CW (2005) Current strategies for articular cartilage repair. Eur Cell Mater 9(23–32):23–32Google Scholar
  9. 9.
    Hunziker EB (2002) Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects. Osteoarth Cartil 10(6):432–463CrossRefGoogle Scholar
  10. 10.
    Grayson WL, Chao P-HG, Marolt D, Kaplan DL, Vunjak-Novakovic G (2008) Engineering custom-designed osteochondral tissue grafts. Trends Biotechnol 26(4):181–189CrossRefGoogle Scholar
  11. 11.
    Coburn JM, Gibson M, Monagle S, Patterson Z, Elisseeff JH (2012) Bioinspired nanofibers support chondrogenesis for articular cartilage repair. Proc Natl Acad Sci 109(25):10012–10017. doi: 10.1073/pnas.1121605109 CrossRefGoogle Scholar
  12. 12.
    Malda J, Woodfield TB, van der Vloodt F, Wilson C, Martens DE, Tramper J, van Blitterswijk CA, Riesle J (2005) The effect of PEGT/PBT scaffold architecture on the composition of tissue engineered cartilage. Biomaterials 26(1):63–72. doi: 10.1016/j.biomaterials.2004.02.046 CrossRefGoogle Scholar
  13. 13.
    Gao J, Dennis JE, Solchaga LA, Awadallah AS, Goldberg VM, Caplan AI (2001) Tissue-engineered fabrication of an osteochondral composite graft using rat bone marrow-derived mesenchymal stem cells. Tissue Eng 7(4):363–371. doi: 10.1089/10763270152436427 CrossRefGoogle Scholar
  14. 14.
    Holland TA, Bodde EW, Baggett LS, Tabata Y, Mikos AG, Jansen JA (2005) Osteochondral repair in the rabbit model utilizing bilayered, degradable oligo(poly(ethylene glycol) fumarate) hydrogel scaffolds. J Biomed Mater Res A 75(1):156–167. doi: 10.1002/jbm.a.30379 CrossRefGoogle Scholar
  15. 15.
    Jiang J, Tang A, Ateshian GA, Guo XE, Hung CT, Lu HH (2010) Bioactive stratified polymer ceramic-hydrogel scaffold for integrative osteochondral repair. Ann Biomed Eng 38(6):2183–2196. doi: 10.1007/s10439-010-0038-y CrossRefGoogle Scholar
  16. 16.
    Kon E, Delcogliano M, Filardo G, Fini M, Giavaresi G, Francioli S, Martin I, Pressato D, Arcangeli E, Quarto R, Sandri M, Marcacci M (2010) Orderly osteochondral regeneration in a sheep model using a novel nano-composite multilayered biomaterial. J Orthop Res 28(1):116–124. doi: 10.1002/jor.20958 Google Scholar
  17. 17.
    Mano JF, Reis RL (2007) Osteochondral defects: present situation and tissue engineering approaches. J Tissue Eng Regen Med 1(4):261–273. doi: 10.1002/term.37 CrossRefGoogle Scholar
  18. 18.
    Schaefer D, Martin I, Jundt G, Seidel J, Heberer M, Grodzinsky A, Bergin I, Vunjak-Novakovic G, Freed LE (2002) Tissue-engineered composites for the repair of large osteochondral defects. Arthritis Rheum 46(9):2524–2534. doi: 10.1002/art.10493 CrossRefGoogle Scholar
  19. 19.
    Sherwood JK, Riley SL, Palazzolo R, Brown SC, Monkhouse DC, Coates M, Griffith LG, Landeen LK, Ratcliffe A (2002) A three-dimensional osteochondral composite scaffold for articular cartilage repair. Biomaterials 23(24):4739–4751CrossRefGoogle Scholar
  20. 20.
    Tampieri A, Sandri M, Landi E, Pressato D, Francioli S, Quarto R, Martin I (2008) Design of graded biomimetic osteochondral composite scaffolds. Biomaterials 29(26):3539–3546. doi: 10.1016/j.biomaterials.2008.05.008 CrossRefGoogle Scholar
  21. 21.
    Giannoni P, Lazzarini E, Ceseracciu L, Barone AC, Quarto R, Scaglione S (2012) Design and characterization of a tissue-engineered bilayer scaffold for osteochondral tissue repair. J Tissue Eng Regen Med. doi: 10.1002/term.1651 Google Scholar
  22. 22.
    Nukavarapu SP, Dorcemus DL (2013) Osteochondral tissue engineering: Current strategies and challenges. Biotechnol Adv 31(5):706–721. doi: 10.1016/j.biotechadv.2012.11.004 CrossRefGoogle Scholar
  23. 23.
    Karageorgiou V, Kaplan D (2005) Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26(27):5474–5491Google Scholar
  24. 24.
    Bohner M, Loosli Y, Baroud G, Lacroix D (2011) Commentary: deciphering the link between architecture and biological response of a bone graft substitute. Acta Biomater 7(2):478–484Google Scholar
  25. 25.
    Lynn AK, Best SM, Cameron RE, Harley BA, Yannas IV, Gibson LJ, Bonfield W (2010) Design of a multiphase osteochondral scaffold. I. Control of chemical composition. J Biomed Mater Res A 92(3):1057–1065Google Scholar
  26. 26.
    Scaglione S, Lazzarini E, Ilengo C, Quarto R (2010) A composite material model for improved bone formation. J Tissue Eng Regen Med 4(7):505–513Google Scholar
  27. 27.
    Suh SW, Shin JY, Kim J, Kim J, Beak CH, Kim D-I, Kim H, Jeon SS, Choo I-W (2002) Effect of different particles on cell proliferation in polymer scaffolds using a solvent-casting and particulate leaching technique. ASAIO J 48(5):460–464CrossRefGoogle Scholar
  28. 28.
    Yoon JJ, Park TG (2001) Degradation behaviors of biodegradable macroporous scaffolds prepared by gas foaming of effervescent salts. J Biomed Mater Res 55(3):401–408CrossRefGoogle Scholar
  29. 29.
    Nam YS, Yoon JJ, Park TG (2000) A novel fabrication method of macroporous biodegradable polymer scaffolds using gas foaming salt as a porogen additive. J Biomed Mater Res 53(1):1–7CrossRefGoogle Scholar
  30. 30.
    Nam YS, Park TG (1999) Porous biodegradable polymeric scaffolds prepared by thermally induced phase separation. J Biomed Mater Res 47(1):8–17CrossRefGoogle Scholar
  31. 31.
    Do Kim H, Bae EH, Kwon IC, Pal RR, Do Nam J, Lee DS (2004) Effect of PEG–PLLA diblock copolymer on macroporous PLLA scaffolds by thermally induced phase separation. Biomaterials 25(12):2319–2329CrossRefGoogle Scholar
  32. 32.
    Yoshimoto H, Shin YM, Terai H, Vacanti JP (2003) A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials 24(12):2077–2082. doi: 10.1016/S0142-9612(02)00635-X CrossRefGoogle Scholar
  33. 33.
    Polini A, Pisignano D, Parodi M, Quarto R, Scaglione S (2011) Osteoinduction of human mesenchymal stem cells by bioactive composite scaffolds without supplemental osteogenic growth factors. PLoS One 6(10):e26211CrossRefGoogle Scholar
  34. 34.
    Yeong W-Y, Chua C-K, Leong K-F, Chandrasekaran M (2004) Rapid prototyping in tissue engineering: challenges and potential. Trends Biotechnol 22(12):643–652CrossRefGoogle Scholar
  35. 35.
    Kon E, Delcogliano M, Filardo G, Altadonna G, Marcacci M (2009) Novel nano-composite multi-layered biomaterial for the treatment of multifocal degenerative cartilage lesions. Knee Surg Sports Traumatol Arthrosc 17(11):1312–1315. doi: 10.1007/s00167-009-0819-8 CrossRefGoogle Scholar
  36. 36.
    Sargeant TD, Desai AP, Banerjee S, Agawu A, Stopek JB (2012) An in situ forming collagen–PEG hydrogel for tissue regeneration. Acta Biomater 8(1):124–132. doi: 10.1016/j.actbio.2011.07.028 CrossRefGoogle Scholar
  37. 37.
    Alhadlaq A, Mao JJ (2005) Tissue-engineered osteochondral constructs in the shape of an articular condyle. J Bone Joint Surg Am. doi: 10.2106/jbjs.d.02104 Google Scholar
  38. 38.
    Alhadlaq A, Elisseeff JH, Hong L, Williams CG, Caplan AI, Sharma B, Kopher RA, Tomkoria S, Lennon DP, Lopez A, Mao JJ (2004) Adult stem cell driven genesis of human-shaped articular condyle. Ann Biomed Eng 32(7):911–923CrossRefGoogle Scholar
  39. 39.
    Mooney DJ, Cima L, Langer R, Johnson L, Hansen LK, Ingber DE, Vacant JP (1991) Principles of tissue engineering and reconstruction using polymer-cell constructs. In: MRS proceedings. Cambridge University Press, p 345Google Scholar
  40. 40.
    Chen CS, Mrksich M, Huang S, Whitesides GM, Ingber DE (1997) Geometric control of cell life and death. Science 276(5317):1425–1428CrossRefGoogle Scholar
  41. 41.
    Leong KF, Cheah CM, Chua CK (2003) Solid freeform fabrication of three-dimensional scaffolds for engineering replacement tissues and organs. Biomaterials 24(13):2363–2378CrossRefGoogle Scholar
  42. 42.
    Rengier F, Mehndiratta A, von Tengg-Kobligk H, Zechmann CM, Unterhinninghofen R, Kauczor HU, Giesel FL (2010) 3D printing based on imaging data: review of medical applications. Int J CARS 5(4):335–341. doi: 10.1007/s11548-010-0476-x CrossRefGoogle Scholar
  43. 43.
    Billiet T, Vandenhaute M, Schelfhout J, Van Vlierberghe S, Dubruel P (2012) A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering. Biomaterials 33(26):6020–6041. doi: 10.1016/j.biomaterials.2012.04.050 CrossRefGoogle Scholar
  44. 44.
    Schantz J-T, Brandwood A, Hutmacher DW, Khor HL, Bittner K (2005) Osteogenic differentiation of mesenchymal progenitor cells in computer designed fibrin-polymer-ceramic scaffolds manufactured by fused deposition modeling. J Mater Sci Mater Med 16(9):807–819CrossRefGoogle Scholar
  45. 45.
    Tellis B, Szivek J, Bliss C, Margolis D, Vaidyanathan R, Calvert P (2008) Trabecular scaffolds created using micro CT guided fused deposition modeling. Mater Sci Eng C 28(1):171–178CrossRefGoogle Scholar
  46. 46.
    Kim K, Yeatts A, Dean D, Fisher JP (2010) Stereolithographic bone scaffold design parameters: osteogenic differentiation and signal expression. Tissue Eng Part B Rev 16(5):523–539. doi: 10.1089/ten.TEB.2010.0171 CrossRefGoogle Scholar
  47. 47.
    Cooke MN, Fisher JP, Dean D, Rimnac C, Mikos AG (2003) Use of stereolithography to manufacture critical-sized 3D biodegradable scaffolds for bone ingrowth. J Biomed Mater Res B Appl Biomater 64(2):65–69. doi: 10.1002/jbm.b.10485 CrossRefGoogle Scholar
  48. 48.
    Woodfield TB, Malda J, de Wijn J, Peters F, Riesle J, van Blitterswijk CA (2004) Design of porous scaffolds for cartilage tissue engineering using a three-dimensional fiber-deposition technique. Biomaterials 25(18):4149–4161. doi: 10.1016/j.biomaterials.2003.10.056 CrossRefGoogle Scholar
  49. 49.
    Lee SJ, Kang HW, Park JK, Rhie JW, Hahn SK, Cho DW (2008) Application of microstereolithography in the development of three-dimensional cartilage regeneration scaffolds. Biomed Microdevices 10(2):233–241. doi: 10.1007/s10544-007-9129-4 CrossRefGoogle Scholar
  50. 50.
    Yen H-J, Tseng C-S, S-h Hsu, Tsai C-L (2009) Evaluation of chondrocyte growth in the highly porous scaffolds made by fused deposition manufacturing (FDM) filled with type II collagen. Biomed Microdevices 11(3):615–624. doi: 10.1007/s10544-008-9271-7 CrossRefGoogle Scholar
  51. 51.
    Chen C-H, Chen J-P, Lee M-Y (2011) Effects of gelatin modification on rapid prototyping PCL scaffolds for cartilage engineering. J Mech Med Biol 11(05):993–1002. doi: 10.1142/S0219519411004848 CrossRefGoogle Scholar
  52. 52.
    Schuller-Ravoo S, Teixeira SM, Feijen J, Grijpma DW, Poot AA (2013) Flexible and elastic scaffolds for cartilage tissue engineering prepared by stereolithography using poly(trimethylene carbonate)-based resins. Macromol Biosci 13(12):1711–1719. doi: 10.1002/mabi.201300399 CrossRefGoogle Scholar
  53. 53.
    Jacobs PF (1992) Rapid prototyping & manufacturing: fundamentals of stereolithography. The Society of Manufacturing Engineers, Dearborn.Google Scholar
  54. 54.
    Zhang X, Jiang X, Sun C (1999) Micro-stereolithography of polymeric and ceramic microstructures. Sens Actuators A 77(2):149–156CrossRefGoogle Scholar
  55. 55.
    Lu Y, Mapili G, Suhali G, Chen S, Roy K (2006) A digital micro-mirror device-based system for the microfabrication of complex, spatially patterned tissue engineering scaffolds. J Biomed Mater Res Part A 77(2):396–405. doi: 10.1002/jbm.a.30601 CrossRefGoogle Scholar
  56. 56.
    Melchels FP, Feijen J, Grijpma DW (2009) A poly(D, L-lactide) resin for the preparation of tissue engineering scaffolds by stereolithography. Biomaterials 30(23–24):3801–3809. doi: 10.1016/j.biomaterials.2009.03.055 CrossRefGoogle Scholar
  57. 57.
    Choi J-W, Wicker R, Lee S-H, Choi K-H, Ha C-S, Chung I (2009) Fabrication of 3D biocompatible/biodegradable micro-scaffolds using dynamic mask projection microstereolithography. J Mater Process Technol 209(15–16):5494–5503. doi: 10.1016/j.jmatprotec.2009.05.004 CrossRefGoogle Scholar
  58. 58.
    Hutmacher DW, Sittinger M, Risbud MV (2004) Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems. Trends Biotechnol 22(7):354–362. doi: 10.1016/j.tibtech.2004.05.005 CrossRefGoogle Scholar
  59. 59.
    Hinczewski C, Corbel S, Chartier T (1998) Ceramic suspensions suitable for stereolithography. J Eur Ceram Soc 18(6):583–590. doi: 10.1016/S0955-2219(97)00186-6 CrossRefGoogle Scholar
  60. 60.
    Matsuda T, Mizutani M, Arnold SC (2000) Molecular design of photocurable liquid biodegradable copolymers. 1. Synthesis and photocuring characteristics. Macromolecules 33(3):795–800CrossRefGoogle Scholar
  61. 61.
    Lee JW, Lan PX, Kim B, Lim G, Cho D-W (2007) 3D scaffold fabrication with PPF/DEF using micro-stereolithography. Microelectron Eng 84(5–8):1702–1705. doi: 10.1016/j.mee.2007.01.267 CrossRefGoogle Scholar
  62. 62.
    Matsuda T, Mizutani M (2002) Liquid acrylate-endcapped biodegradable poly(epsilon-caprolactone-co-trimethylene carbonate). II. Computer-aided stereolithographic microarchitectural surface photoconstructs. J Biomed Mater Res 62(3):395–403. doi: 10.1002/jbm.10295 CrossRefGoogle Scholar
  63. 63.
    Jansen J, Melchels FP, Grijpma DW, Feijen J (2008) Fumaric acid monoethyl ester-functionalized poly (D, L-lactide)/N-vinyl-2-pyrrolidone resins for the preparation of tissue engineering scaffolds by stereolithography. Biomacromolecules 10(2):214–220CrossRefGoogle Scholar
  64. 64.
    Melchels FPW, Bertoldi K, Gabbrielli R, Velders AH, Feijen J, Grijpma DW (2010) Mathematically defined tissue engineering scaffold architectures prepared by stereolithography. Biomaterials 31(27):6909–6916. doi: 10.1016/j.biomaterials.2010.05.068 CrossRefGoogle Scholar
  65. 65.
    Gabbrielli R, Turner I, Bowen CR (2008) Development of modelling methods for materials to be used as bone substitutes. Key Eng Mater 361:903–906CrossRefGoogle Scholar
  66. 66.
    Yoon JJ, Park TG (2001) Degradation behaviors of biodegradable macroporous scaffolds prepared by gas foaming of effervescent salts. J Biomed Mater Res 55(3):401–408Google Scholar
  67. 67.
    Nam YS, Yoon JJ, Park TG (2000) A novel fabrication method of macroporous biodegradable polymer scaffolds using gas foaming salt as a porogen additive. J Biomed Mater Res Appl Biomater 53(1):1–7Google Scholar
  68. 68.
    Nam YS, Park TG (1999) Porous biodegradable polymeric scaffolds prepared by thermally induced phase separation. Biomed Mater Res 47(1):8–17Google Scholar
  69. 69.
    Kim SB, Kim YJ, Yoon TL, Park SA, Cho IH, Kim EJ, Kim IA, Shin, JW (2004) The characteristics of a hydroxyapatite–chitosan–PMMA bone cement. Biomaterials 25(26):5715–5723Google Scholar
  70. 70.
    Yoshimoto H, Shin YM, Terai H, Vacanti JP (2003) A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials 24(12):2077–2082Google Scholar
  71. 71.
    Brady GA, Halloran JW (1997) Stereolithography of ceramic suspensions. Rapid Prototyp J 3(2):61–65. doi: 10.1108/13552549710176680 CrossRefGoogle Scholar
  72. 72.
    Licciulli A, Corcione CE, Greco A, Amicarelli V, Maffezzoli A (2004) Laser stereolithography of ZrO2 toughened Al2O3. J Eur Ceram Soc 24(15–16):3769–3777. doi: 10.1016/j.jeurceramsoc.2003.12.024 CrossRefGoogle Scholar
  73. 73.
    Chu TM, Orton DG, Hollister SJ, Feinberg SE, Halloran JW (2002) Mechanical and in vivo performance of hydroxyapatite implants with controlled architectures. Biomaterials 23(5):1283–1293CrossRefGoogle Scholar
  74. 74.
    Bian W, Li D, Lian Q, Li X, Zhang W, Wang K, Jin Z (2012) Fabrication of a bio-inspired beta-Tricalcium phosphate/collagen scaffold based on ceramic stereolithography and gel casting for osteochondral tissue engineering. Rapid Prototyp J 18(1):68–80. doi: 10.1108/13552541211193511 CrossRefGoogle Scholar
  75. 75.
    Zhang W, Lian Q, Li D, Wang K, Hao D, Bian W, He J, Jin Z (2014) Cartilage repair and subchondral bone migration using 3D printing osteochondral composites: a one-year-period study in rabbit trochlea. BioMed Res Int 2014:16. doi: 10.1155/2014/746138 Google Scholar
  76. 76.
    Ingavle GC, Frei AW, Gehrke SH, Detamore MS (2013) Incorporation of aggrecan in interpenetrating network hydrogels to improve cellular performance for cartilage tissue engineering. Tissue Eng Part A 19(11–12):1349–1359. doi: 10.1089/ten.tea.2012.0160 CrossRefGoogle Scholar
  77. 77.
    Nguyen QT, Hwang Y, Chen AC, Varghese S, Sah RL (2012) Cartilage-like mechanical properties of poly (ethylene glycol)-diacrylate hydrogels. Biomaterials 33(28):6682–6690. doi: 10.1016/j.biomaterials.2012.06.005 CrossRefGoogle Scholar
  78. 78.
    Li X, Li D, Wang L, Lu B, Wang Z (2008) Osteoblast cell response to β-tricalcium phosphate scaffolds with controlled architecture in flow perfusion culture system. J Mater Sci Mater Med 19(7):2691–2697. doi: 10.1007/s10856-008-3391-8 CrossRefGoogle Scholar
  79. 79.
    Chen A, Klisch S, Bae W, Temple M, McGowan K, Gratz K, Schumacher B, Sah R (2004) Mechanical characterization of native and tissue-engineered cartilage. In: De Ceuninck F, Sabatini M, Pastoureau P (eds) Cartilage and osteoarthritis, vol 101. Methods in molecular medicine. Humana Press, New York, pp 157–190. doi: 10.1385/1-59259-821-8:157 CrossRefGoogle Scholar
  80. 80.
    Goulet RW, Goldstein SA, Ciarelli MJ, Kuhn JL, Brown MB, Feldkamp LA (1994) The relationship between the structural and orthogonal compressive properties of trabecular bone. J Biomech 27(4):375–389. doi: 10.1016/0021-9290(94)90014-0 CrossRefGoogle Scholar
  81. 81.
    Zhang W, Lian Q, Li D, Wang K, Hao D, Bian W, Jin Z (2015) The effect of interface microstructure on interfacial shear strength for osteochondral scaffolds based on biomimetic design and 3D printing. Mater Sci Eng C 46:10–15. doi: 10.1016/j.msec.2014.09.042 CrossRefGoogle Scholar
  82. 82.
    Walters B (1991) Fast, precise, safe prototypes with FDM. In: 39th Annual technical meeting, p 1991Google Scholar
  83. 83.
    Hoque M, Hutmacher D, Feng W, Li S, Huang M-H, Vert M, Wong Y (2005) Fabrication using a rapid prototyping system and in vitro characterization of PEG-PCL-PLA scaffolds for tissue engineering. J Biomater Sci Polym Ed 16(12):1595–1610CrossRefGoogle Scholar
  84. 84.
    Melchels FPW, Domingos MAN, Klein TJ, Malda J, Bartolo PJ, Hutmacher DW (2012) Additive manufacturing of tissues and organs. Prog Polym Sci 37(8):1079–1104. doi: 10.1016/j.progpolymsci.2011.11.007 CrossRefGoogle Scholar
  85. 85.
    Zein I, Hutmacher DW, Tan KC, Teoh SH (2002) Fused deposition modeling of novel scaffold architectures for tissue engineering applications. Biomaterials 23(4):1169–1185. doi: 10.1016/S0142-9612(01)00232-0 CrossRefGoogle Scholar
  86. 86.
    Swieszkowski W, Tuan BH, Kurzydlowski KJ, Hutmacher DW (2007) Repair and regeneration of osteochondral defects in the articular joints. Biomol Eng 24(5):489–495. doi: 10.1016/j.bioeng.2007.07.014 CrossRefGoogle Scholar
  87. 87.
    Ding C, Qiao Z, Jiang W, Li H, Wei J, Zhou G, Dai K (2013) Regeneration of a goat femoral head using a tissue-specific, biphasic scaffold fabricated with CAD/CAM technology. Biomaterials 34(28):6706–6716. doi: 10.1016/j.biomaterials.2013.05.038 CrossRefGoogle Scholar
  88. 88.
    Liu L, Xiong Z, Yan Y, Hu Y, Zhang R, Wang S (2007) Porous morphology, porosity, mechanical properties of poly (α-hydroxy acid)–tricalcium phosphate composite scaffolds fabricated by low-temperature deposition. J Biomed Mater Res Part A 82(3):618–629CrossRefGoogle Scholar
  89. 89.
    Xiong Z, Yan Y, Wang S, Zhang R, Zhang C (2002) Fabrication of porous scaffolds for bone tissue engineering via low-temperature deposition. Scr Mater 46(11):771–776CrossRefGoogle Scholar
  90. 90.
    Liu L, Xiong Z, Yan Y, Zhang R, Wang X, Jin L (2009) Multinozzle low-temperature deposition system for construction of gradient tissue engineering scaffolds. J Biomed Mater Res B Appl Biomater 88(1):254–263. doi: 10.1002/jbm.b.31176 CrossRefGoogle Scholar
  91. 91.
    Park TG (1995) Degradation of poly (lactic-co-glycolic acid) microspheres: effect of copolymer composition. Biomaterials 16(15):1123–1130CrossRefGoogle Scholar
  92. 92.
    Lee SJ, Khang G, Lee YM, Lee HB (2002) Interaction of human chondrocytes and NIH/3T3 fibroblasts on chloric acid-treated biodegradable polymer surfaces. J Biomater Sci Polym Ed 13(2):197–212CrossRefGoogle Scholar
  93. 93.
    Yuan H, De Bruijn JD, Zhang X, Van Blitterswijk CA, De Groot K (2001) Use of an osteoinductive biomaterial as a bone morphogenetic protein carrier. J Mater Sci Mater Med 12(9):761–766CrossRefGoogle Scholar
  94. 94.
    Qu S, Leng Y, Guo X, Cheng J, Chen W, Yang Z, Zhang X (2002) Histological and ultrastructural analysis of heterotopic osteogenesis in porous calcium phosphate ceramics. J Mater Sci Lett 21(2):153–155CrossRefGoogle Scholar
  95. 95.
    Bose S, Roy M, Bandyopadhyay A (2012) Recent advances in bone tissue engineering scaffolds. Trends Biotechnol 30(10):546–554. doi: 10.1016/j.tibtech.2012.07.005 CrossRefGoogle Scholar
  96. 96.
    Hutmacher DW (2000) Scaffolds in tissue engineering bone and cartilage. Biomaterials 21(24):2529–2543CrossRefGoogle Scholar
  97. 97.
    Lam CXF, Mo XM, Teoh S-H, Hutmacher DW (2002) Scaffold development using 3D printing with a starch-based polymer. Mater Sci Eng C 20(1):49–56CrossRefGoogle Scholar
  98. 98.
    Leukers B, Gülkan H, Irsen SH, Milz S, Tille C, Schieker M, Seitz H (2005) Hydroxyapatite scaffolds for bone tissue engineering made by 3D printing. J Mater Sci Mater Med 16(12):1121–1124CrossRefGoogle Scholar
  99. 99.
    Santos ARC, Almeida HA, Bártolo PJ (2013) Additive manufacturing techniques for scaffold-based cartilage tissue engineering: a review on various additive manufacturing technologies in generating scaffolds for cartilage tissue engineering. Virtual Phys Prototyp 8(3):175–186CrossRefGoogle Scholar
  100. 100.
    Scaglione S, Ceseracciu L, Aiello M, Coluccino L, Ferrazzo F, Giannoni P, Quarto R (2014) A novel scaffold geometry for chondral applications: theoretical model and in vivo validation. Biotechnol Bioeng 111(10):2107–2119. doi: 10.1002/bit.25255 CrossRefGoogle Scholar
  101. 101.
    Nakamura M, Iwanaga S, Henmi C, Arai K, Nishiyama Y (2010) Biomatrices and biomaterials for future developments of bioprinting and biofabrication. Biofabrication 2(1):014110CrossRefGoogle Scholar
  102. 102.
    Mironov V, Boland T, Trusk T, Forgacs G, Markwald RR (2003) Organ printing: computer-aided jet-based 3D tissue engineering. Trends Biotechnol 21(4):157–161CrossRefGoogle Scholar
  103. 103.
    Boland T, Xu T, Damon B, Cui X (2006) Application of inkjet printing to tissue engineering. Biotechnol J 1(9):910–917CrossRefGoogle Scholar
  104. 104.
    Fedorovich NE, De Wijn JR, Verbout AJ, Alblas J, Dhert WJ (2008) Three-dimensional fiber deposition of cell-laden, viable, patterned constructs for bone tissue printing. Tissue Eng Part A 14(1):127–133. doi: 10.1089/ten.a.2007.0158 CrossRefGoogle Scholar
  105. 105.
    Shim JH, Lee JS, Kim JY, Cho DW (2012) Bioprinting of a mechanically enhanced threedimensional dual cell-laden construct for osteochondral tissue engineering using a multi-head tissue/organ building system. J Micromech Microeng 22(8):085014Google Scholar
  106. 106.
    Fedorovich NE, Swennen I, Girones J, Moroni L, van Blitterswijk CA, Schacht E, Alblas J, Dhert WJ (2009) Evaluation of photocrosslinked Lutrol hydrogel for tissue printing applications. Biomacromolecules 10(7):1689–1696. doi: 10.1021/bm801463q CrossRefGoogle Scholar
  107. 107.
    Shim JH, Kim JY, Park M, Park J, Cho DW (2011) Development of a hybrid scaffold with synthetic biomaterials and hydrogel using solid freeform fabrication technology. Biofabrication 3(3):034102. doi: 10.1088/1758-5082/3/3/034102 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Alessandra Marrella
    • 1
    • 2
  • Marta Cavo
    • 1
    • 3
  • Silvia Scaglione
    • 1
    Email author
  1. 1.CNR—National Research Council of ItalyIEIIT InstituteGenoaItaly
  2. 2.Department of Experimental MedicineUniversity of GenoaGenoaItaly
  3. 3.Department of Informatics, Bioengineering, Robotics and Systems EngineeringUniversity of GenoaGenoaItaly

Personalised recommendations