Skip to main content

Osteoarthritis

  • 997 Accesses

Part of the Studies in Mechanobiology, Tissue Engineering and Biomaterials book series (SMTEB,volume 21)

Abstract

Osteoarthritis (OA) is the most common form of arthritis and the most relevant musculoskeletal disorder worldwide. It is considered to be a joint degenerative disease with imbalanced homeostasis. It can potentially affect any joint in the body, but most often the knees, hip, hand and the lower back suffers from OA. Due to the strong functional association of the joint components OA affects all tissues, present in the joint to a certain degree. Because of its wide occurrence, and great impact on the society OA receives a lot of attention in clinical research, although the molecular background of OA remains incompletely understood. The complexity of the joint structure, and the limited knowledge we have on OA sets many obstacles to the development of effective therapies. As of current state there is no cure for OA.

Keywords

  • Articular Cartilage
  • Subchondral Bone
  • Chondrocyte Hypertrophy
  • Osteophyte Formation
  • Calcify Cartilage

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-44785-8_4
  • Chapter length: 18 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   139.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-44785-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   179.99
Price excludes VAT (USA)
Hardcover Book
USD   179.99
Price excludes VAT (USA)
Fig. 4.1
Fig. 4.2

References

  1. Goldring MB (2012) Chondrogenesis, chondrocyte differentiation, and articular cartilage metabolism in health and osteoarthritis. Ther Adv Musculoskelet Dis 4:269–285. doi:10.1177/1759720X12448454

    CrossRef  Google Scholar 

  2. Murphy L, Schwartz TA, Helmick CG et al (2008) Lifetime risk of symptomatic knee osteoarthritis. Arthritis Rheum 59:1207–1213. doi:10.1002/art.24021

    CrossRef  Google Scholar 

  3. Neogi T (2013) The epidemiology and impact of pain in osteoarthritis. Osteoarthr Cartil 21:1145–1153. doi:10.1016/j.joca.2013.03.018

    CrossRef  Google Scholar 

  4. Valdes AM, Spector TD (2010) The clinical relevance of genetic susceptibility to osteoarthritis. Best Pract Res Clin Rheumatol 24:3–14. doi:10.1016/j.berh.2009.08.005

    CrossRef  Google Scholar 

  5. Kapoor M, Martel-Pelletier J, Lajeunesse D et al (2011) Role of proinflammatory cytokines in the pathophysiology of osteoarthritis. Nat Rev Rheumatol 7:33–42. doi:10.1038/nrrheum.2010.196

    CrossRef  Google Scholar 

  6. Pelletier JP, Martel-Pelletier J, Ghandur-Mnaymneh L et al (1985) Role of synovial membrane inflammation in cartilage matrix breakdown in the Pond-Nuki dog model of osteoarthritis. Arthritis Rheum 28:554–561

    CrossRef  Google Scholar 

  7. Felson DT (2014) Osteoarthritis: priorities for osteoarthritis research: much to be done. Nat Rev Rheumatol 10:447–448. doi:10.1038/nrrheum.2014.76

    CrossRef  Google Scholar 

  8. Lawrence RC (2008) NIH public access. Arthritis Rheum 58:26–35. doi:10.1002/art.23176.Estimates

    CrossRef  Google Scholar 

  9. Kurtz S, Ong K, Lau E, Manley M (2011) Current and projected utilization of total joint replacements. Compr Biomater 6:1–9

    CrossRef  Google Scholar 

  10. Lohmander LS (2013) Knee replacement for osteoarthritis: facts, hopes, and fears. Medicographia 35:181–188

    Google Scholar 

  11. Vos T, Flaxman AD, Naghavi M et al (2012) Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380:2163–2196. doi:10.1016/S0140-6736(12)61729-2

    CrossRef  Google Scholar 

  12. Murray CJL, Lopez AD (2013) Measuring the global burden of disease. N Engl J Med 369:448–457. doi:10.1056/NEJMra1201534

    CrossRef  Google Scholar 

  13. Puig-Junoy J, Ruiz Zamora A (2015) Socio-economic costs of osteoarthritis: a systematic review of cost-of-illness studies. Semin Arthritis Rheum 44:531–541. doi:10.1016/j.semarthrit.2014.10.012

    CrossRef  Google Scholar 

  14. Haq SA, Davatchi F (2011) Osteoarthritis of the knees in the COPCORD world. Int J Rheum Dis 14:122–129. doi:10.1111/j.1756-185X.2011.01615.x

    CrossRef  Google Scholar 

  15. Bitton R (2009) The economic burden of osteoarthritis. Am J Manag Care 15:S230–S235. doi:10.1002/art.1780290311

    Google Scholar 

  16. Gupta S, Hawker GA, Laporte A et al (2005) The economic burden of disabling hip and knee osteoarthritis (OA) from the perspective of individuals living with this condition. Rheumatology 44:1531–1537. doi:10.1093/rheumatology/kei049

    CrossRef  Google Scholar 

  17. Vos T, Barber RM, Bell B et al (2015) Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. doi:10.1016/S0140-6736(15)60692-4

    Google Scholar 

  18. Hunter DJ, Schofield D, Callander E (2014) The individual and socioeconomic impact of osteoarthritis. Nat Rev Rheumatol 10:437–441. doi:10.1038/nrrheum.2014.44

    Google Scholar 

  19. Hiligsmann M, Cooper C, Guillemin F et al (2014) A reference case for economic evaluations in osteoarthritis: an expert consensus article from the European Society for Clinical and Economic Aspects of Osteoporosis and Osteoarthritis (ESCEO). Semin Arthritis Rheum 44:271–282. doi:10.1016/j.semarthrit.2014.06.005

    CrossRef  Google Scholar 

  20. Houard X, Goldring MB, Berenbaum F (2013) Homeostatic mechanisms in articular cartilage and role of inflammation in osteoarthritis. Curr Rheumatol Rep 15:375. doi:10.1007/s11926-013-0375-6

    CrossRef  Google Scholar 

  21. Van Donkelaar CC, Wilson W (2012) Mechanics of chondrocyte hypertrophy. Biomech Model Mechanobiol 11:655–664. doi:10.1007/s10237-011-0340-0

    CrossRef  Google Scholar 

  22. Van der Kraan PM, van den Berg WB (2012) Chondrocyte hypertrophy and osteoarthritis: role in initiation and progression of cartilage degeneration? Osteoarthr Cartil 20:223–232. doi:10.1016/j.joca.2011.12.003

    CrossRef  Google Scholar 

  23. Wei F, Zhou J, Wei X et al (2012) Activation of Indian hedgehog promotes chondrocyte hypertrophy and upregulation of MMP-13 in human osteoarthritic cartilage. Osteoarthr Cartil 20:755–763. doi:10.1016/j.joca.2012.03.010

    CrossRef  Google Scholar 

  24. Goldring MB, Tsuchimochi K, Ijiri K (2006) The control of chondrogenesis. J Cell Biochem 97:33–44. doi:10.1002/jcb.20652

    CrossRef  Google Scholar 

  25. Jansen H, Meffert RH, Birkenfeld F et al (2012) Detection of vascular endothelial growth factor (VEGF) in moderate osteoarthritis in a rabbit model. Ann Anat 194:452–456. doi:10.1016/j.aanat.2012.01.006

    CrossRef  Google Scholar 

  26. Huebner JL, Johnson KA, Kraus VB, Terkeltaub RA (2009) Transglutaminase 2 is a marker of chondrocyte hypertrophy and osteoarthritis severity in the Hartley guinea pig model of knee OA. Osteoarthr Cartil 17:1056–1064. doi:10.1016/j.joca.2009.02.015

    CrossRef  Google Scholar 

  27. Pfander D, Swoboda B, Kirsch T (2001) Expression of early and late differentiation markers (proliferating cell nuclear antigen, syndecan-3, annexin VI, and alkaline phosphatase) by human osteoarthritic chondrocytes. Am J Pathol 159:1777–1783. doi:10.1016/S0002-9440(10)63024-6

    CrossRef  Google Scholar 

  28. Pulsatelli L, Addimanda O, Brusi V et al (2012) New findings in osteoarthritis pathogenesis: therapeutic implications. Ther Adv Chronic Dis 4(1):23–43. doi:10.1177/2040622312462734

    CrossRef  Google Scholar 

  29. Maldonado M, Nam J (2013) The role of changes in extracellular matrix of cartilage in the presence of inflammation on the pathology of osteoarthritis. Biomed Res Int. doi:10.1155/2013/284873

    Google Scholar 

  30. Brew CJ, Clegg PD, Boot-Handford RP et al (2010) Gene expression in human chondrocytes in late osteoarthritis is changed in both fibrillated and intact cartilage without evidence of generalised chondrocyte hypertrophy. Ann Rheum Dis 69:234–240. doi:10.1136/ard.2008.097139

    CrossRef  Google Scholar 

  31. Heinegård D, Saxne T (2011) The role of the cartilage matrix in osteoarthritis. Nat Rev Rheumatol 7:50–56. doi:10.1038/nrrheum.2010.198

    CrossRef  Google Scholar 

  32. Sandy JD, Verscharen C (2001) Analysis of aggrecan in human knee cartilage and synovial fluid indicates that aggrecanase (ADAMTS) activity is responsible for the catabolic turnover and loss of whole aggrecan whereas other protease activity is required for C-terminal processing in vivo. Biochem J 358:615–626

    CrossRef  Google Scholar 

  33. Stanton H, Melrose J, Little CB, Fosang AJ (2011) Proteoglycan degradation by the ADAMTS family of proteinases. Biochim Biophys Acta Mol Basis Dis 1812:1616–1629. doi:10.1016/j.bbadis.2011.08.009

    CrossRef  Google Scholar 

  34. Melrose J, Fuller ES, Roughley PJ et al (2008) Fragmentation of decorin, biglycan, lumican and keratocan is elevated in degenerate human meniscus, knee and hip articular cartilages compared with age-matched macroscopically normal and control tissues. Arthritis Res Ther 10:R79. doi:10.1186/ar2453

    CrossRef  Google Scholar 

  35. Gendron C, Kashiwagi M, Lim NH et al (2007) Proteolytic activities of human ADAMTS-5: comparative studies with ADAMTS-4. J Biol Chem 282:18294–18306. doi:10.1074/jbc.M701523200

    CrossRef  Google Scholar 

  36. Arner EC (2002) Aggrecanase-mediated cartilage degradation. Curr Opin Pharmacol 2:322–329

    CrossRef  Google Scholar 

  37. Little CB, Meeker CT, Golub SB et al (2007) Blocking aggrecanase cleavage in the aggrecan interglobular domain abrogates cartilage erosion and promotes cartilage repair. J Clin Invest 117:1627–1636. doi:10.1172/JCI30765

    CrossRef  Google Scholar 

  38. Lohmander LS, Atley LM, Pietka TA, Eyre DR (2003) The release of crosslinked peptides from type II collagen into human synovial fluid is increased soon after joint injury and in osteoarthritis. Arthritis Rheum 48:3130–3139. doi:10.1002/art.11326

    CrossRef  Google Scholar 

  39. Sandy JD, Flannery CR, Neame PJ, Lohmander LS (1992) The structure of aggrecan fragments in human synovial fluid. Evidence for the involvement in osteoarthritis of a novel proteinase which cleaves the Glu 373-Ala 374 bond of the interglobular domain. J Clin Invest 89:1512–1516. doi:10.1172/JCI115742

    CrossRef  Google Scholar 

  40. Bank RA, Soudry M, Maroudas A et al (2000) The increased swelling and instantaneous deformation of osteoarthritic cartilage is highly correlated with collagen degradation. Arthritis Rheum 43:2202–2210. doi:10.1002/1529-0131(200010)43:10<2202:AID-ANR7>3.0.CO;2-E

    CrossRef  Google Scholar 

  41. Billinghurst RC, Dahlberg L, Ionescu M et al (1997) Enhanced cleavage of type II collagen by collagenases in osteoarthritic articular cartilage. J Clin Invest 99:1534–1545. doi:10.1172/JCI119316

    CrossRef  Google Scholar 

  42. Tardif G, Pelletier JP, Dupuis M et al (1999) Collagenase 3 production by human osteoarthritic chondrocytes in response to growth factors and cytokines is a function of the physiologic state of the cells. Arthritis Rheum 42:1147–1158. doi:10.1002/1529-0131(199906)42:6<1147:AID-ANR11>3.0.CO;2-Y

    CrossRef  Google Scholar 

  43. Nagase H (1997) Activation mechanisms of matrix metalloproteinases. Biol Chem 378:151–160

    Google Scholar 

  44. Ra H-J, Parks WC (2007) Control of matrix metalloproteinase catalytic activity. Matrix Biol 26:587–596. doi:10.1016/j.matbio.2007.07.001

    CrossRef  Google Scholar 

  45. Dreier R, Grässel S, Fuchs S et al (2004) Pro-MMP-9 is a specific macrophage product and is activated by osteoarthritic chondrocytes via MMP-3 or a MT1-MMP/MMP-13 cascade. Exp Cell Res 297:303–312. doi:10.1016/j.yexcr.2004.02.027

    CrossRef  Google Scholar 

  46. Iliopoulos D, Malizos KN, Oikonomou P, Tsezou A (2008) Integrative microRNA and proteomic approaches identify novel osteoarthritis genes and their collaborative metabolic and inflammatory networks. PLoS ONE 3:e3740. doi:10.1371/journal.pone.0003740

    CrossRef  Google Scholar 

  47. Reboul P, Pelletier J, Tardif G, ​Cloutier JM, ​Martel-Pelletier J (1996) The new collagenase, collagenase-3, is expressed and synthesized by human chondrocytes but not by synoviocytes. J Clin Invest 97(9):2011–2019. doi:10.1172/JCI118636

  48. Troeberg L, Nagase H (2012) Proteases involved in cartilage matrix degradation in osteoarthritis. Biochim Biophys Acta 1824:133–145. doi:10.1016/j.bbapap.2011.06.020

    CrossRef  Google Scholar 

  49. Yang C-C, Lin C-Y, Wang H-S, Lyu S-R (2013) Matrix metalloproteases and tissue inhibitors of metalloproteinases in medial plica and pannus-like tissue contribute to knee osteoarthritis progression. PLoS ONE 8:e79662. doi:10.1371/journal.pone.0079662

    CrossRef  Google Scholar 

  50. Goldring MB, Marcu KB (2009) Cartilage homeostasis in health and rheumatic diseases. Arthritis Res Ther 11:224. doi:10.1186/ar2592

    CrossRef  Google Scholar 

  51. Visse R, Nagase H (2003) Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ Res 92:827–839. doi:10.1161/01.RES.0000070112.80711.3D

    CrossRef  Google Scholar 

  52. Zhang F, Yu W, Luo W et al (2014) Effect of osteopontin on TIMP-1 and TIMP-2 mRNA in chondrocytes of human knee osteoarthritis in vitro. Exp Ther Med 8:391–394

    Google Scholar 

  53. Mi M, Shi S, Li T et al (2012) TIMP2 deficient mice develop accelerated osteoarthritis via promotion of angiogenesis upon destabilization of the medial meniscus. Biochem Biophys Res Commun 423:366–372. doi:10.1016/j.bbrc.2012.05.132

    CrossRef  Google Scholar 

  54. Miosge N, Hartmann M, Maelicke C, Herken R (2004) Expression of collagen type I and type II in consecutive stages of human osteoarthritis. Histochem Cell Biol 122:229–236. doi:10.1007/s00418-004-0697-6

    CrossRef  Google Scholar 

  55. Brandt KD, Myers SL, Burr D, Albrecht M (1991) Osteoarthritic changes in canine articular cartilage, subchondral bone, and synovium fifty-four months after transection of the anterior cruciate ligament. Arthritis Rheum 34:1560–1570

    CrossRef  Google Scholar 

  56. Felson DT, Neogi T (2004) Osteoarthritis: is it a disease of cartilage or of bone? Arthritis Rheum 50:341–344. doi:10.1002/art.20051

    CrossRef  Google Scholar 

  57. Aigner T, Fundel K, Saas J et al (2006) Large-scale gene expression profiling reveals major pathogenetic pathways of cartilage degeneration in osteoarthritis. Arthritis Rheum 54:3533–3544. doi:10.1002/art.22174

    CrossRef  Google Scholar 

  58. Blanco FJ, Ochs RL, Schwarz H, Lotz M (1995) Chondrocyte apoptosis induced by nitric oxide. Am J Pathol 146:75–85

    Google Scholar 

  59. López-Armada MJ, Caramés B, Lires-Deán M et al (2006) Cytokines, tumor necrosis factor-alpha and interleukin-1beta, differentially regulate apoptosis in osteoarthritis cultured human chondrocytes. Osteoarthr Cartil 14:660–669. doi:10.1016/j.joca.2006.01.005

    CrossRef  Google Scholar 

  60. Kong D, Zheng T, Zhang M et al (2013) Static mechanical stress induces apoptosis in rat endplate chondrocytes through MAPK and mitochondria-dependent caspase activation signaling pathways. PLoS ONE 8:1–10. doi:10.1371/journal.pone.0069403

    Google Scholar 

  61. Zamli Z, Sharif M (2011) Chondrocyte apoptosis: a cause or consequence of osteoarthritis? Int J Rheum Dis 14:159–166. doi:10.1111/j.1756-185X.2011.01618.x

    CrossRef  Google Scholar 

  62. Tait SWG, Green DR (2010) Mitochondria and cell death: outer membrane permeabilization and beyond. Nat Rev Mol Cell Biol 11:621–632. doi:10.1038/nrm2952

    CrossRef  Google Scholar 

  63. Blanco FJ, Rego I, Ruiz-Romero C (2011) The role of mitochondria in osteoarthritis. Nat Rev Rheumatol 7:161–169. doi:10.1038/nrrheum.2010.213

    CrossRef  Google Scholar 

  64. Intekhab-Alam NY, White OB, Getting SJ et al (2013) Urocortin protects chondrocytes from NO-induced apoptosis: a future therapy for osteoarthritis? Cell Death Dis 4:e717. doi:10.1038/cddis.2013.231

    CrossRef  Google Scholar 

  65. Csaki C, Mobasheri A, Shakibaei M (2009) Synergistic chondroprotective effects of curcumin and resveratrol in human articular chondrocytes: inhibition of IL-1beta-induced NF-kappaB-mediated inflammation and apoptosis. Arthritis Res Ther 11:R165. doi:10.1186/ar2850

    CrossRef  Google Scholar 

  66. Henrotin Y, Priem F, Mobasheri A (2013) Curcumin: a new paradigm and therapeutic opportunity for the treatment of osteoarthritis: curcumin for osteoarthritis management. Springerplus 2:56. doi:10.1186/2193-1801-2-56

    CrossRef  Google Scholar 

  67. Li W, Cai L, Zhang Y et al (2015) Intra-articular resveratrol injection prevents osteoarthritis progression in a mouse model by activating SIRT1 and thereby silencing HIF-2α. J Orthop Res. doi:10.1002/jor.22859

    Google Scholar 

  68. Wang J, Gao J-S, Chen J-W et al (2012) Effect of resveratrol on cartilage protection and apoptosis inhibition in experimental osteoarthritis of rabbit. Rheumatol Int 32:1541–1548. doi:10.1007/s00296-010-1720-y

    CrossRef  Google Scholar 

  69. Švajger U, Jeras M (2012) Anti-inflammatory effects of resveratrol and its potential use in therapy of immune-mediated diseases. Int Rev Immunol 31:202–222. doi:10.3109/08830185.2012.665108

    CrossRef  Google Scholar 

  70. Riveiro-Naveira RR, Loureiro J, Valcárcel-Ares MN et al (2014) Anti-inflammatory effect of resveratrol as a dietary supplement in an antigen-induced arthritis rat model. Osteoarthr Cartil 22:S290. doi:10.1016/j.joca.2014.02.539

    CrossRef  Google Scholar 

  71. Pfander D, Rahmanzadeh R, Scheller EE (1999) Presence and distribution of collagen II, collagen I, fibronectin, and tenascin in rabbit normal and osteoarthritic cartilage. J Rheumatol 26:386–394

    Google Scholar 

  72. Veje K, Hyllested-Winge JL, Ostergaard K (2003) Topographic and zonal distribution of tenascin in human articular cartilage from femoral heads: normal versus mild and severe osteoarthritis. Osteoarthr Cartil 11:217–227

    CrossRef  Google Scholar 

  73. Hayami T, Funaki H, Yaoeda K et al (2003) Expression of the cartilage derived anti-angiogenic factor chondromodulin-I decreases in the early stage of experimental osteoarthritis. J Rheumatol 30:2207–2217

    Google Scholar 

  74. Henrotin Y, Pesesse L, Sanchez C (2012) Subchondral bone and osteoarthritis: biological and cellular aspects. Osteoporos Int 23(Suppl 8):S847–S851. doi:10.1007/s00198-012-2162-z

    CrossRef  Google Scholar 

  75. Pearle AD, Warren RF, Rodeo SA (2005) Basic science of articular cartilage and osteoarthritis. Clin Sports Med 24:1–12. doi:10.1016/j.csm.2004.08.007

    CrossRef  Google Scholar 

  76. Lorenz H, Richter W (2006) Osteoarthritis: cellular and molecular changes in degenerating cartilage. Prog Histochem Cytochem 40:135–163. doi:10.1016/j.proghi.2006.02.003

    CrossRef  Google Scholar 

  77. Little CB, Ghosh P, Bellenger CR (1996) Topographic variation in biglycan and decorin synthesis by articular cartilage in the early stages of osteoarthritis: an experimental study in sheep. J Orthop Res 14:433–444. doi:10.1002/jor.1100140314

    CrossRef  Google Scholar 

  78. Matyas JR, Huang D, Chung M, Adams ME (2002) Regional quantification of cartilage type II collagen and aggrecan messenger RNA in joints with early experimental osteoarthritis. Arthritis Rheum 46:1536–1543. doi:10.1002/art.10331

    CrossRef  Google Scholar 

  79. Matyas JR, Ehlers PF, Huang D, Adams ME (1999) The early molecular natural history of experimental osteoarthritis. I. Progressive discoordinate expression of aggrecan and type II procollagen messenger RNA in the articular cartilage of adult animals. Arthritis Rheum 42:993–1002. doi:10.1002/1529-0131(199905)42:5<993:AID-ANR19>3.0.CO;2-U

    CrossRef  Google Scholar 

  80. Young AA, Smith MM, Smith SM et al (2005) Regional assessment of articular cartilage gene expression and small proteoglycan metabolism in an animal model of osteoarthritis. Arthritis Res Ther 7:R852–R861. doi:10.1186/ar1756

    CrossRef  Google Scholar 

  81. Adams ME, Matyas JR, Huang D, Dourado GS (1995) Expression of proteoglycans and collagen in the hypertrophic phase of experimental osteoarthritis. J Rheumatol Suppl 43:94–97

    Google Scholar 

  82. Lorenz H, Wenz W, Ivancic M et al (2005) Early and stable upregulation of collagen type II, collagen type I and YKL40 expression levels in cartilage during early experimental osteoarthritis occurs independent of joint location and histological grading. Arthritis Res Ther 7:R156–R165. doi:10.1186/ar1471

    CrossRef  Google Scholar 

  83. Bluteau G, Conrozier T, Mathieu P et al (2001) Matrix metalloproteinase-1, -3, -13 and aggrecanase-1 and -2 are differentially expressed in experimental osteoarthritis. Biochim Biophys Acta 1526:147–158

    CrossRef  Google Scholar 

  84. Aigner T, Zien A, Gehrsitz A et al (2001) Anabolic and catabolic gene expression pattern analysis in normal versus osteoarthritic cartilage using complementary DNA-array technology. Arthritis Rheum 44:2777–2789

    CrossRef  Google Scholar 

  85. Le Graverand M-PH, Eggerer J, Vignon E et al (2002) Assessment of specific mRNA levels in cartilage regions in a lapine model of osteoarthritis. J Orthop Res 20:535–544. doi:10.1016/S0736-0266(01)00126-7

    CrossRef  Google Scholar 

  86. Akizuki S, Mow VC, Muller F et al (1987) Tensile properties of human knee joint cartilage. II. Correlations between weight bearing and tissue pathology and the kinetics of swelling. J Orthop Res 5:173–186. doi:10.1002/jor.1100050204

    CrossRef  Google Scholar 

  87. Lai WM, Hou JS, Mow VC (1991) A triphasic theory for the swelling and deformation behaviors of articular cartilage. J Biomech Eng 113:245–258

    CrossRef  Google Scholar 

  88. Setton LA, Mow VC, Müller FJ et al (1994) Mechanical properties of canine articular cartilage are significantly altered following transection of the anterior cruciate ligament. J Orthop Res 12:451–463. doi:10.1002/jor.1100120402

    CrossRef  Google Scholar 

  89. Goldring SR (2012) Alterations in periarticular bone and cross talk between subchondral bone and articular cartilage in osteoarthritis. Ther Adv Musculoskelet Dis 4:249–258. doi:10.1177/1759720X12437353

    CrossRef  Google Scholar 

  90. Lories RJ, Luyten FP (2011) The bone–cartilage unit in osteoarthritis. Nat Rev Rheumatol 7:43–49. doi:10.1038/nrrheum.2010.197

    CrossRef  Google Scholar 

  91. Pan J, Wang B, Li W et al (2012) Elevated cross-talk between subchondral bone and cartilage in osteoarthritic joints. Bone 51:212–217. doi:10.1016/j.bone.2011.11.030

    CrossRef  Google Scholar 

  92. Radin EL, Paul IL (1970) Does cartilage compliance reduce skeletal impact loads?. the relative force-attenuating properties of articular cartilage, synovial fluid, periarticular soft tissues and bone. Arthritis Rheum 13:139–144. doi:10.1002/art.1780130206

    CrossRef  Google Scholar 

  93. Roemer FW, Neogi T, Nevitt MC et al (2010) Subchondral bone marrow lesions are highly associated with, and predict subchondral bone attrition longitudinally: the MOST study. Osteoarthr Cartil 18:47–53. doi:10.1016/j.joca.2009.08.018

    CrossRef  Google Scholar 

  94. Lewis CW, Williamson AK, Chen AC et al (2005) Evaluation of subchondral bone mineral density associated with articular cartilage structure and integrity in healthy equine joints with different functional demands. Am J Vet Res 66:1823–1829

    CrossRef  Google Scholar 

  95. Seah S, Wheaton D, Li L et al (2012) The relationship of tibial bone perfusion to pain in knee osteoarthritis. Osteoarthr Cartil 20:1527–1533. doi:10.1016/j.joca.2012.08.025

    CrossRef  Google Scholar 

  96. Li B, Aspden RM (1997) Composition and mechanical properties of cancellous bone from the femoral head of patients with osteoporosis or osteoarthritis. J Bone Miner Res 12:641–651. doi:10.1359/jbmr.1997.12.4.641

    CrossRef  Google Scholar 

  97. Gelse K, Söder S, Eger W et al (2003) Osteophyte development—molecular characterization of differentiation stages. Osteoarthr Cartil 11:141–148

    CrossRef  Google Scholar 

  98. Van der Kraan PM, van den Berg WB (2007) Osteophytes: relevance and biology. Osteoarthr Cartil 15:237–244. doi:10.1016/j.joca.2006.11.006

    CrossRef  Google Scholar 

  99. Hashimoto S, Creighton-Achermann L, Takahashi K et al (2002) Development and regulation of osteophyte formation during experimental osteoarthritis. Osteoarthr Cartil 10:180–187. doi:10.1053/joca.2001.0505

    CrossRef  Google Scholar 

  100. Blom AB, van Lent PLEM, Holthuysen AEM et al (2004) Synovial lining macrophages mediate osteophyte formation during experimental osteoarthritis. Osteoarthr Cartil 12:627–635. doi:10.1016/j.joca.2004.03.003

    CrossRef  Google Scholar 

  101. Kishimoto K, Kitazawa R, Kurosaka M et al (2006) Expression profile of genes related to osteoclastogenesis in mouse growth plate and articular cartilage. Histochem Cell Biol 125:593–602. doi:10.1007/s00418-005-0103-z

    CrossRef  Google Scholar 

  102. Neve A, Cantatore FP, Corrado A et al (2013) In vitro and in vivo angiogenic activity of osteoarthritic and osteoporotic osteoblasts is modulated by VEGF and vitamin D3 treatment. Regul Pept 184:81–84. doi:10.1016/j.regpep.2013.03.014

    CrossRef  Google Scholar 

  103. Yuan Q, Sun L, Li J-J, An C-H (2014) Elevated VEGF levels contribute to the pathogenesis of osteoarthritis. BMC Musculoskelet Disord 15:437. doi:10.1186/1471-2474-15-437

    CrossRef  Google Scholar 

  104. Mobasheri A, Matta C, Zákány R, Musumeci G (2015) Chondrosenescence: Definition, hallmarks and potential role in the pathogenesis of osteoarthritis. Maturitas 80:237–244. doi:10.1016/j.maturitas.2014.12.003

    CrossRef  Google Scholar 

  105. Ellman MB, Yan D, Chen D, Im H (2012) Biochemical mediators involved in cartilage degradation and the induction of pain in osteoarthritis. In: Rothschild BM (ed) Princ. osteoarthritis—its defin. character, deriv. modality-related recognit. InTech, pp 367–399

    Google Scholar 

  106. Clarke C, Held A, Stange R et al (2015) A4.11 Syndecan-4 is an important player in regulating the WNT signalling pathway in articular cartilage. Ann Rheum Dis 74:A40–A41. doi:10.1136/annrheumdis-2015-207259.93

    CrossRef  Google Scholar 

  107. Funck-Brentano T, Bouaziz W, Marty C et al (2014) Dkk-1-mediated inhibition of Wnt signaling in bone ameliorates osteoarthritis in mice. Arthritis Rheumatol (Hoboken, NJ) 66:3028–3039. doi:10.1002/art.38799

    CrossRef  Google Scholar 

  108. Leijten JCH, Emons J, Sticht C et al (2012) Gremlin 1, frizzled-related protein, and Dkk-1 are key regulators of human articular cartilage homeostasis. Arthritis Rheum 64:3302–3312. doi:10.1002/art.34535

    CrossRef  Google Scholar 

  109. Chan BY, Fuller ES, Russell AK et al (2011) Increased chondrocyte sclerostin may protect against cartilage degradation in osteoarthritis. Osteoarthr Cartil 19:874–885. doi:10.1016/j.joca.2011.04.014

    CrossRef  Google Scholar 

  110. Papathanasiou I, Malizos KN, Tsezou A (2012) Bone morphogenetic protein-2-induced Wnt/β-catenin signaling pathway activation through enhanced low-density-lipoprotein receptor-related protein 5 catabolic activity contributes to hypertrophy in osteoarthritic chondrocytes. Arthritis Res Ther 14:R82. doi:10.1186/ar3805

    CrossRef  Google Scholar 

  111. Van Der Kraan PM, Davidson ENB, Blom A, Van Den Berg W (2009) Review TGF-beta signaling in chondrocyte terminal differentiation and osteoarthritis Modulation and integration of signaling pathways through receptor-Smads. Osteoarthr Cartil 17:1539–1545. doi:10.1016/j.joca.2009.06.008

    CrossRef  Google Scholar 

  112. Zhen G, Wen C, Jia X et al (2013) Inhibition of TGF-β signaling in mesenchymal stem cells of subchondral bone attenuates osteoarthritis. Nat Med 19:704–712. doi:10.1038/nm.3143

    CrossRef  Google Scholar 

  113. Blaney Davidson EN, Vitters EL, van der Kraan PM, van den Berg WB (2006) Expression of transforming growth factor- (TGF) and the TGF signalling molecule SMAD-2P in spontaneous and instability-induced osteoarthritis: role in cartilage degradation, chondrogenesis and osteophyte formation. Ann Rheum Dis 65:1414–1421. doi:10.1136/ard.2005.045971

    CrossRef  Google Scholar 

  114. Scharstuhl A, Glansbeek HL, van Beuningen HM et al (2002) Inhibition of endogenous TGF—during experimental osteoarthritis prevents osteophyte formation and impairs cartilage repair. J Immunol 169:507–514. doi:10.4049/jimmunol.169.1.507

    CrossRef  Google Scholar 

  115. Kingsley DM (1994) The TGF-beta superfamily: new members, new receptors, and new genetic tests of function in different organisms. Genes Dev 8:133–146

    CrossRef  Google Scholar 

  116. Kobayashi T, Lyons KM, McMahon AP, Kronenberg HM (2005) BMP signaling stimulates cellular differentiation at multiple steps during cartilage development. Proc Natl Acad Sci USA 102:18023–18027. doi:10.1073/pnas.0503617102

    CrossRef  Google Scholar 

  117. Sharma AR, Jagga S, Lee S-S, Nam J-S (2013) Interplay between cartilage and subchondral bone contributing to pathogenesis of osteoarthritis. Int J Mol Sci 14:19805–19830. doi:10.3390/ijms141019805

    CrossRef  Google Scholar 

  118. Wozney JM, Rosen V (1998) Bone morphogenetic protein and bone morphogenetic protein gene family in bone formation and repair. Clin Orthop Relat Res 346:26–37

    CrossRef  Google Scholar 

  119. Cook SD, Rueger DC (1996) Osteogenic protein-1: biology and applications. Clin Orthop Relat Res 324:29–38

    CrossRef  Google Scholar 

  120. Hayashi M, Muneta T, Ju Y-J et al (2008) Weekly intra-articular injections of bone morphogenetic protein-7 inhibits osteoarthritis progression. Arthritis Res Ther 10:R118. doi:10.1186/ar2521

    CrossRef  Google Scholar 

  121. Hunter DJ, Pike MC, Jonas BL et al (2010) Phase 1 safety and tolerability study of BMP-7 in symptomatic knee osteoarthritis. BMC Musculoskelet Disord 11:232. doi:10.1186/1471-2474-11-232

    CrossRef  Google Scholar 

  122. Blaney Davidson EN, Vitters EL, van Lent PLEM et al (2007) Elevated extracellular matrix production and degradation upon bone morphogenetic protein-2 (BMP-2) stimulation point toward a role for BMP-2 in cartilage repair and remodeling. Arthritis Res Ther 9:R102. doi:10.1186/ar2305

    CrossRef  Google Scholar 

  123. Blaney Davidson EN, Vitters EL, Bennink MB et al (2014) Inducible chondrocyte-specific overexpression of BMP2 in young mice results in severe aggravation of osteophyte formation in experimental OA without altering cartilage damage. Ann Rheum Dis 74(6):1257–1264. doi:10.1136/annrheumdis-2013-204528

    CrossRef  Google Scholar 

  124. Smeets TJM, Barg EC, Kraan MC et al (2003) Analysis of the cell infiltrate and expression of proinflammatory cytokines and matrix metalloproteinases in arthroscopic synovial biopsies: comparison with synovial samples from patients with end stage, destructive rheumatoid arthritis. Ann Rheum Dis 62:635–638

    CrossRef  Google Scholar 

  125. Smith MD, Triantafillou S, Parker A et al (1997) Synovial membrane inflammation and cytokine production in patients with early osteoarthritis. J Rheumatol 24:365–371

    Google Scholar 

  126. Tchetina EV, Squires G, Poole AR (2005) Increased type II collagen degradation and very early focal cartilage degeneration is associated with upregulation of chondrocyte differentiation related genes in early human articular cartilage lesions. J Rheumatol 32:876–886

    Google Scholar 

  127. Orita S, Koshi T, Mitsuka T et al (2011) Associations between proinflammatory cytokines in the synovial fluid and radiographic grading and pain-related scores in 47 consecutive patients with osteoarthritis of the knee. BMC Musculoskelet Disord 12:144. doi:10.1186/1471-2474-12-144

    CrossRef  Google Scholar 

  128. Furman BD, Mangiapani DS, Zeitler E et al (2014) Targeting pro-inflammatory cytokines following joint injury: acute intra-articular inhibition of interleukin-1 following knee injury prevents post-traumatic arthritis. Arthritis Res Ther 16:R134. doi:10.1186/ar4591

    CrossRef  Google Scholar 

  129. Imagawa K, de Andrés MC, Hashimoto K et al (2011) The epigenetic effect of glucosamine and a nuclear factor-kappa B (NF-kB) inhibitor on primary human chondrocytes–implications for osteoarthritis. Biochem Biophys Res Commun 405:362–367. doi:10.1016/j.bbrc.2011.01.007

    CrossRef  Google Scholar 

  130. Niederberger E, Geisslinger G (2008) The IKK-NF-kappaB pathway: a source for novel molecular drug targets in pain therapy? FASEB J 22:3432–3442. doi:10.1096/fj.08-109355

    CrossRef  Google Scholar 

  131. Rigoglou S, Papavassiliou AG (2013) The NF-kB signalling pathway in osteoarthritis. Int J Biochem Cell Biol 45:2580–2584. doi:10.1016/j.biocel.2013.08.018

    CrossRef  Google Scholar 

  132. Keifer JA, Guttridge DC, Ashburner BP, Baldwin AS (2001) Inhibition of NF-kappa B activity by thalidomide through suppression of IkappaB kinase activity. J Biol Chem 276:22382–22387. doi:10.1074/jbc.M100938200

    CrossRef  Google Scholar 

  133. Gomes WF, Lacerda ACR, Mendonça VA et al (2012) Effect of aerobic training on plasma cytokines and soluble receptors in elderly women with knee osteoarthritis, in response to acute exercise. Clin Rheumatol 31:759–766. doi:10.1007/s10067-011-1927-7

    CrossRef  Google Scholar 

  134. Messier SP, Mihalko SL, Legault C et al (2013) Effects of intensive diet and exercise on knee joint loads, inflammation, and clinical outcomes among overweight and obese adults with knee osteoarthritis: the IDEA randomized clinical trial. JAMA 310:1263–1273. doi:10.1001/jama.2013.277669

    CrossRef  Google Scholar 

  135. Martel-Pelletier J, Boileau C, Pelletier J-P, Roughley PJ (2008) Cartilage in normal and osteoarthritis conditions. Best Pract Res Clin Rheumatol 22:351–384. doi:10.1016/j.berh.2008.02.001

    CrossRef  Google Scholar 

  136. Lee AS, Ellman MB, Yan D et al (2013) A current review of molecular mechanisms regarding osteoarthritis and pain. Gene 527:440–447. doi:10.1016/j.gene.2013.05.069

    CrossRef  Google Scholar 

  137. Haseeb A, Haqqi TM (2013) Immunopathogenesis of osteoarthritis. Clin Immunol 146:185–196. doi:10.1016/j.clim.2012.12.011

    CrossRef  Google Scholar 

  138. Borzi RM, Mazzetti I, Macor S et al (1999) Flow cytometric analysis of intracellular chemokines in chondrocytes in vivo: constitutive expression and enhancement in osteoarthritis and rheumatoid arthritis. FEBS Lett 455:238–242

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta Ondrésik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Ondrésik, M., Oliveira, J.M., Reis, R.L. (2017). Osteoarthritis. In: Oliveira, J., Reis, R. (eds) Regenerative Strategies for the Treatment of Knee Joint Disabilities. Studies in Mechanobiology, Tissue Engineering and Biomaterials, vol 21. Springer, Cham. https://doi.org/10.1007/978-3-319-44785-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44785-8_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44783-4

  • Online ISBN: 978-3-319-44785-8

  • eBook Packages: EngineeringEngineering (R0)