Advertisement

Clinical Management of Articular Cartilage Lesions

  • Carlos A. VilelaEmail author
  • Cristina Correia
  • Joaquim Miguel Oliveira
  • Rui Amandi Sousa
  • Rui Luís Reis
  • João Espregueira-Mendes
Chapter
Part of the Studies in Mechanobiology, Tissue Engineering and Biomaterials book series (SMTEB, volume 21)

Abstract

Articular cartilage is extremely sensitive to traumatic lesions and natural repair is very limited. When regeneration occur the tissue found in the lesion site is mostly fibrocartilage with poor mechanical properties, rendering a poor long-term clinical outcome. Cartilage lesion is a common problem with an impressive clinical and economic impact. With a difficult diagnosis in an initial disease stage, the cartilage lesion can progress to osteoarthritis and, therefore, a prompt diagnosis and treatment is required. Clinical management of cartilage lesions is a very demanding issue and the treatment is dependent of the extension, depth, location, chronicity of the lesions, patient’s conditions and patients’ expectations as well as associated lesions. In the present chapter, we present the clinical findings and diagnosis methodology to identify a cartilage lesion in an early stage. Finally, we discuss the indications, contra-indications, advantages, disadvantages and treatment decision-making as well as the outcomes of the available therapeutic approaches.

Keywords

Cartilage Cartilage repair Microfracture Mosaicplasty ACI MACI MASI Tissue engineering 

References

  1. 1.
    Aroen A, Loken S, Heir S, Alvik E, Ekeland A, Granlund OG et al (2004) Articular cartilage lesions in 993 consecutive knee arthroscopies. Am J Sports Med 32(1):211–215CrossRefGoogle Scholar
  2. 2.
    Ashton E, Riek J (2013) Advanced MR techniques in multicenter clinical trials. J Magn Reson Imaging 37(4):761–769CrossRefGoogle Scholar
  3. 3.
    Asik M, Ciftci F, Sen C, Erdil M, Atalar A (2008) The microfracture technique for the treatment of full-thickness articular cartilage lesions of the knee: midterm results. Arthroscopy 24(11):1214–1220CrossRefGoogle Scholar
  4. 4.
    Batty L, Dance S, Bajaj S, Cole BJ (2011) Autologous chondrocyte implantation: an overview of technique and outcomes. ANZ J Surg 81(1–2):18–25CrossRefGoogle Scholar
  5. 5.
    Baum T, Joseph GB, Nardo L, Virayavanich W, Arulanandan A, Alizai H et al (2013) Correlation of magnetic resonance imaging-based knee cartilage T2 measurements and focal knee lesions with body mass index: thirty-six-month followup data from a longitudinal, observational multicenter study. Arthritis Care Res 65(1):23–33CrossRefGoogle Scholar
  6. 6.
    Bentley G, Bhamra JS, Gikas PD, Skinner JA, Carrington R, Briggs TW (2013) Repair of osteochondral defects in joints—how to achieve success. Injury 44(Suppl 1):S3–S10CrossRefGoogle Scholar
  7. 7.
    Biant LC, Bentley G, Vijayan S, Skinner JA, Carrington RW (2014) Long-term results of autologous chondrocyte implantation in the knee for chronic chondral and osteochondral defects. Am J Sports Med 42(9):2178–2183CrossRefGoogle Scholar
  8. 8.
    Braun HJ, Dragoo JL, Hargreaves BA, Levenston ME, Gold GE (2013) Application of advanced magnetic resonance imaging techniques in evaluation of the lower extremity. Radiol Clin N Am 51(3):529–545CrossRefGoogle Scholar
  9. 9.
    Brittberg M, Winalski CS (2003) Evaluation of cartilage injuries and repair. J Bone Joint Surg Am 85-A(Suppl 2):58–69Google Scholar
  10. 10.
    Brown TD, Shaw DT (1984) In vitro contact stress distribution on the femoral condyles. J Orthop Res 2(2):190–199CrossRefGoogle Scholar
  11. 11.
    Casscells SW (1990) Outerbridge’s ridges. Arthroscopy 6(4):253CrossRefGoogle Scholar
  12. 12.
    Casula V, Hirvasniemi J, Lehenkari P, Ojala R, Haapea M, Saarakkala S et al (2014) Association between quantitative MRI and ICRS arthroscopic grading of articular cartilage. Knee Surg Sports Traumatol Arthrosc 24:2046–2054Google Scholar
  13. 13.
    Chan DD, Neu CP (2013) Probing articular cartilage damage and disease by quantitative magnetic resonance imaging. J R Soc Interface 10(78):20120608CrossRefGoogle Scholar
  14. 14.
    Chan WP, Lang P, Stevens MP, Sack K, Majumdar S, Stoller DW et al (1991) Osteoarthritis of the knee: comparison of radiography, CT, and MR imaging to assess extent and severity. AJR Am J Roentgenol 157(4):799–806CrossRefGoogle Scholar
  15. 15.
    Chung JY, Lee DH, Kim TH, Kwack KS, Yoon KH, Min BH (2014) Cartilage extra-cellular matrix biomembrane for the enhancement of microfractured defects. Knee Surg Sports Traumatol Arthrosc 22(6):1249–1259CrossRefGoogle Scholar
  16. 16.
    Cohen ZA, McCarthy DM, Kwak SD, Legrand P, Fogarasi F, Ciaccio EJ et al (1999) Knee cartilage topography, thickness, and contact areas from MRI: in-vitro calibration and in-vivo measurements. Osteoarthr Cartil 7(1):95–109CrossRefGoogle Scholar
  17. 17.
    Crema MD, Felson DT, Roemer FW, Wang K, Marra MD, Nevitt MC et al (2013) Prevalent cartilage damage and cartilage loss over time are associated with incident bone marrow lesions in the tibiofemoral compartments: the MOST study. Osteoarthr Cartil 21(2):306–313CrossRefGoogle Scholar
  18. 18.
    Crema MD, Roemer FW, Marra MD, Burstein D, Gold GE, Eckstein F et al (2011) Articular cartilage in the knee: current MR imaging techniques and applications in clinical practice and research. Radiographics 31(1):37–61CrossRefGoogle Scholar
  19. 19.
    Cucchiarini M, Madry H, Guilak F, Saris DB, Stoddart MJ, Koon Wong M et al (2014) A vision on the future of articular cartilage repair. Eur Cell Mater 27:12–16Google Scholar
  20. 20.
    Curl WW, Krome J, Gordon ES, Rushing J, Smith BP, Poehling GG (1997) Cartilage injuries: a review of 31,516 knee arthroscopies. Arthroscopy 13(4):456–460CrossRefGoogle Scholar
  21. 21.
    Delcogliano M, de Caro F, Scaravella E, Ziveri G, De Biase CF, Marotta D et al (2014) Use of innovative biomimetic scaffold in the treatment for large osteochondral lesions of the knee. Knee Surg Sports Traumatol Arthrosc 22(6):1260–1269Google Scholar
  22. 22.
    Dewan AK, Gibson MA, Elisseeff JH, Trice ME (2014) Evolution of autologous chondrocyte repair and comparison to other cartilage repair techniques. Biomed Res Int 2014:272481CrossRefGoogle Scholar
  23. 23.
    Dhollander AA, Verdonk PC, Lambrecht S, Verdonk R, Elewaut D, Verbruggen G et al (2012) Short-term outcome of the second generation characterized chondrocyte implantation for the treatment of cartilage lesions in the knee. Knee Surg Sports Traumatol Arthrosc 20(6):1118–1127CrossRefGoogle Scholar
  24. 24.
    Dutcheshen N, Maerz T, Rabban P, Haut RC, Button KD, Baker KC et al (2012) The acute effect of bipolar radiofrequency energy thermal chondroplasty on intrinsic biomechanical properties and thickness of chondromalacic human articular cartilage. J Biomech Eng 134(8):081007CrossRefGoogle Scholar
  25. 25.
    Enea D, Cecconi S, Busilacchi A, Manzotti S, Gesuita R, Gigante A (2012) Matrix-induced autologous chondrocyte implantation (MACI) in the knee. Knee Surg Sports Traumatol Arthrosc 20(5):862–869CrossRefGoogle Scholar
  26. 26.
    Enochson L, Sonnergren HH, Mandalia VI, Lindahl A (2012) Bipolar radiofrequency plasma ablation induces proliferation and alters cytokine expression in human articular cartilage chondrocytes. Arthroscopy 28(9):1275–1282CrossRefGoogle Scholar
  27. 27.
    Eskelinen AP, Visuri T, Larni HM, Ritsila V (2004) Primary cartilage lesions of the knee joint in young male adults. Overweight as a predisposing factor. An arthroscopic study. Scand J Surg 93(3):229–233Google Scholar
  28. 28.
    Espregueira-Mendes J, Pereira H, Sevivas N, Varanda P, da Silva MV, Monteiro A et al (2012) Osteochondral transplantation using autografts from the upper tibio-fibular joint for the treatment of knee cartilage lesions. Knee Surg Sports Traumatol Arthrosc 20(6):1136–1142CrossRefGoogle Scholar
  29. 29.
    Farr J, Cole B, Dhawan A, Kercher J, Sherman S (2011) Clinical cartilage restoration: evolution and overview. Clin Orthop Relat Res 469(10):2696–2705CrossRefGoogle Scholar
  30. 30.
    Felson DT, Niu J, Gross KD, Englund M, Sharma L, Cooke TD et al (2013) Valgus malalignment is a risk factor for lateral knee osteoarthritis incidence and progression: findings from the Multicenter Osteoarthritis Study and the Osteoarthritis Initiative. Arthritis Rheum 65(2):355–362CrossRefGoogle Scholar
  31. 31.
    Filardo G, Madry H, Jelic M, Roffi A, Cucchiarini M, Kon E (2013) Mesenchymal stem cells for the treatment of cartilage lesions: from preclinical findings to clinical application in orthopaedics. Knee Surg Sports Traumatol Arthrosc 21(8):1717–1729CrossRefGoogle Scholar
  32. 32.
    Foldager CB (2013) Advances in autologous chondrocyte implantation and related techniques for cartilage repair. Dan Med J 60(4):B4600Google Scholar
  33. 33.
    Foldager CB, Bunger C, Nielsen AB, Ulrich-Vinther M, Munir S, Everland H et al (2012) Dermatan sulphate in methoxy polyethylene glycol–polylactide–co-glycolic acid scaffolds upregulates fibronectin gene expression but has no effect on in vivo osteochondral repair. Int Orthop 36(7):1507–1513CrossRefGoogle Scholar
  34. 34.
    Furuzawa-Carballeda J, Lima G, Llorente L, Nunez-Alvarez C, Ruiz-Ordaz BH, Echevarria-Zuno S et al (2012) Polymerized-type I collagen downregulates inflammation and improves clinical outcomes in patients with symptomatic knee osteoarthritis following arthroscopic lavage: a randomized, double-blind, and placebo-controlled clinical trial. Sci World J 2012:342854CrossRefGoogle Scholar
  35. 35.
    Giorgini A, Donati D, Cevolani L, Frisoni T, Zambianchi F, Catani F (2013) Fresh osteochondral allograft is a suitable alternative for wide cartilage defect in the knee. Injury 44(Suppl 1):S16–S20CrossRefGoogle Scholar
  36. 36.
    Glaser C, Tins BJ, Trumm CG, Richardson JB, Reiser MF, McCall IW (2007) Quantitative 3D MR evaluation of autologous chondrocyte implantation in the knee: feasibility and initial results. Osteoarthr Cartil 15(7):798–807CrossRefGoogle Scholar
  37. 37.
    Gomoll AH, Filardo G, Almqvist FK, Bugbee WD, Jelic M, Monllau JC et al (2012) Surgical treatment for early osteoarthritis. Part II: allografts and concurrent procedures. Knee Surg Sports Traumatol Arthrosc 20(3):468–486CrossRefGoogle Scholar
  38. 38.
    Gomoll AH, Filardo G, de Girolamo L, Espregueira-Mendes J, Marcacci M, Rodkey WG et al (2012) Surgical treatment for early osteoarthritis. Part I: cartilage repair procedures. Knee Surg Sports Traumatol Arthrosc 20(3):450–466CrossRefGoogle Scholar
  39. 39.
    Goyal D, Goyal A, Keyhani S, Lee EH, Hui JH (2013) Evidence-based status of second- and third-generation autologous chondrocyte implantation over first generation: a systematic review of level I and II studies. Arthroscopy 29(11):1872–1878CrossRefGoogle Scholar
  40. 40.
    Goyal D, Keyhani S, Goyal A, Lee EH, Hui JH, Vaziri AS (2014) Evidence-based status of osteochondral cylinder transfer techniques: a systematic review of level I and II studies. Arthroscopy 30(4):497–505CrossRefGoogle Scholar
  41. 41.
    Goyal D, Keyhani S, Lee EH, Hui JH (2013) Evidence-based status of microfracture technique: a systematic review of level I and II studies. Arthroscopy 29(9):1579–1588CrossRefGoogle Scholar
  42. 42.
    Gudas R, Gudaite A, Mickevicius T, Masiulis N, Simonaityte R, Cekanauskas E et al (2013) Comparison of osteochondral autologous transplantation, microfracture, or debridement techniques in articular cartilage lesions associated with anterior cruciate ligament injury: a prospective study with a 3-year follow-up. Arthroscopy 29(1):89–97CrossRefGoogle Scholar
  43. 43.
    Gupta PK, Das AK, Chullikana A, Majumdar AS (2012) Mesenchymal stem cells for cartilage repair in osteoarthritis. Stem Cell Res Ther 3(4):25CrossRefGoogle Scholar
  44. 44.
    Haene R, Qamirani E, Story RA, Pinsker E, Daniels TR (2012) Intermediate outcomes of fresh talar osteochondral allografts for treatment of large osteochondral lesions of the talus. J Bone Joint Surg Am 94(12):1105–1110CrossRefGoogle Scholar
  45. 45.
    Hirose J, Nishioka H, Okamoto N, Oniki Y, Nakamura E, Yamashita Y et al (2013) Articular cartilage lesions increase early cartilage degeneration in knees treated by anterior cruciate ligament reconstruction: T1rho mapping evaluation and 1-year follow-up. Am J Sports Med 41(10):2353–2361CrossRefGoogle Scholar
  46. 46.
    Hjelle K, Solheim E, Strand T, Muri R, Brittberg M (2002) Articular cartilage defects in 1,000 knee arthroscopies. Arthroscopy 18(7):730–734CrossRefGoogle Scholar
  47. 47.
    Howell SM (2010) The role of arthroscopy in treating osteoarthritis of the knee in the older patient. Orthopedics 33(9):652Google Scholar
  48. 48.
    Huang Y, Zhang Y, Ding X, Liu S, Sun T (2014) Working conditions of bipolar radiofrequency on human articular cartilage repair following thermal injury during arthroscopy. Chin Med J 127(22):3881–3886Google Scholar
  49. 49.
    Hunt N, Sanchez-Ballester J, Pandit R, Thomas R, Strachan R (2001) Chondral lesions of the knee: a new localization method and correlation with associated pathology. Arthroscopy 17(5):481–490CrossRefGoogle Scholar
  50. 50.
    Hunziker EB (1999) Articular cartilage repair: Are the intrinsic biological constraints undermining this process insuperable? Osteoarthr Cartil 7(1):15–28CrossRefGoogle Scholar
  51. 51.
    Hunziker EB (2002) Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects. Osteoarthr Cartil 10(6):432–463CrossRefGoogle Scholar
  52. 52.
    Ibarra-Ponce de Leon JC, Cabrales-Pontigo M, Crisostomo-Martinez JF, Almazan-Diaz A, Cruz-Lopez F, Encalada-Diaz MI et al (2009) Results of arthroscopic debridement and lavage in patients with knee osteoarthritis. Acta Ortop Mex 23(2):85–89Google Scholar
  53. 53.
    Jackson DW, Simon TM, Aberman HM (2001) Symptomatic articular cartilage degeneration: the impact in the new millennium. Clin Orthop Relat Res 391(Suppl):S14–S25CrossRefGoogle Scholar
  54. 54.
    Johnson VL, Hunter DJ (2014) The epidemiology of osteoarthritis. Best Pract Res Clin Rheumatol 28(1):5–15CrossRefGoogle Scholar
  55. 55.
    Johnstone B, Alini M, Cucchiarini M, Dodge GR, Eglin D, Guilak F et al (2013) Tissue engineering for articular cartilage repair–the state of the art. Eur Cell Mater 25:248–267Google Scholar
  56. 56.
    Katz JN, Brownlee SA, Jones MH (2014) The role of arthroscopy in the management of knee osteoarthritis. Best Pract Res Clin Rheumatol 28(1):143–156CrossRefGoogle Scholar
  57. 57.
    Kijowski R, Blankenbaker DG, Davis KW, Shinki K, Kaplan LD, De SmetAA (2009) Comparison of 1.5- and 3.0-T MR imaging for evaluating the articular cartilage of the knee joint. Radiology 250(3):839–848CrossRefGoogle Scholar
  58. 58.
    Kijowski R, Blankenbaker DG, Munoz Del Rio A, Baer GS, Graf BK (2013) Evaluation of the articular cartilage of the knee joint: value of adding a T2 mapping sequence to a routine MR imaging protocol. Radiology 267(2):503–513CrossRefGoogle Scholar
  59. 59.
    Kock L, van Donkelaar CC, Ito K (2012) Tissue engineering of functional articular cartilage: the current status. Cell Tissue Res 347(3):613–627CrossRefGoogle Scholar
  60. 60.
    Kreuz PC, Muller S, von Keudell A, Tischer T, Kaps C, Niemeyer P et al (2013) Influence of sex on the outcome of autologous chondrocyte implantation in chondral defects of the knee. Am J Sports Med 41(7):1541–1548CrossRefGoogle Scholar
  61. 61.
    Kuni B, Schmitt H, Chloridis D, Ludwig K (2012) Clinical and MRI results after microfracture of osteochondral lesions of the talus. Arch Orthop Trauma Surg 132(12):1765–1771CrossRefGoogle Scholar
  62. 62.
    Lazic S, Boughton O, Hing C, Bernard J (2014) Arthroscopic washout of the knee: a procedure in decline. Knee 21(2):631–634CrossRefGoogle Scholar
  63. 63.
    Lee GW, Son JH, Kim JD, Jung GH (2013) Is platelet-rich plasma able to enhance the results of arthroscopic microfracture in early osteoarthritis and cartilage lesion over 40 years of age? Eur J Orthop Surg Traumatol 23(5):581–587CrossRefGoogle Scholar
  64. 64.
    Lewandrowski KU, Muller J, Schollmeier G (1997) Concomitant meniscal and articular cartilage lesions in the femorotibial joint. Am J Sports Med 25(4):486–494CrossRefGoogle Scholar
  65. 65.
    Lim HC, Bae JH, Song SH, Park YE, Kim SJ (2012) Current treatments of isolated articular cartilage lesions of the knee achieve similar outcomes. Clin Orthop Relat Res 470(8):2261–2267CrossRefGoogle Scholar
  66. 66.
    Marcacci M, Filardo G, Kon E (2013) Treatment of cartilage lesions: What works and why? Injury 44(Suppl 1):S11–S15CrossRefGoogle Scholar
  67. 67.
    McAlindon TE, Snow S, Cooper C, Dieppe PA (1992) Radiographic patterns of osteoarthritis of the knee joint in the community: the importance of the patellofemoral joint. Ann Rheum Dis 51(7):844–849CrossRefGoogle Scholar
  68. 68.
    McCormick F, Harris JD, Abrams GD, Frank R, Gupta A, Hussey K et al (2014) Trends in the surgical treatment of articular cartilage lesions in the United States: an analysis of a large private-payer database over a period of 8 years. Arthroscopy 30(2):222–226CrossRefGoogle Scholar
  69. 69.
    Mezhov V, Ciccutini FM, Hanna FS, Brennan SL, Wang YY, Urquhart DM et al (2014) Does obesity affect knee cartilage? A systematic review of magnetic resonance imaging data. Obes Rev 15(2):143–157CrossRefGoogle Scholar
  70. 70.
    Mollon B, Kandel R, Chahal J, Theodoropoulos J (2013) The clinical status of cartilage tissue regeneration in humans. Osteoarthr Cartil 21(12):1824–1833CrossRefGoogle Scholar
  71. 71.
    Moseley JB, O’Malley K, Petersen NJ, Menke TJ, Brody BA, Kuykendall DH et al (2002) A controlled trial of arthroscopic surgery for osteoarthritis of the knee. N Engl J Med 347(2):81–88CrossRefGoogle Scholar
  72. 72.
    Negrin LL, Vecsei V (2013) Do meta-analyses reveal time-dependent differences between the clinical outcomes achieved by microfracture and autologous chondrocyte implantation in the treatment of cartilage defects of the knee? J Orthop Sci 18(6):940–948CrossRefGoogle Scholar
  73. 73.
    Nukavarapu SP, Dorcemus DL (2013) Osteochondral tissue engineering: current strategies and challenges. Biotechnol Adv 31(5):706–721CrossRefGoogle Scholar
  74. 74.
    Ollat D, Lebel B, Thaunat M, Jones D, Mainard L, Dubrana F et al (2011) Mosaic osteochondral transplantations in the knee joint, midterm results of the SFA multicenter study. Orthop Traumatol Surg Res 97(8 Suppl):S160–S166CrossRefGoogle Scholar
  75. 75.
    Outerbridge RE (1961) The etiology of chondromalacia patellae. J Bone Joint Surg Br 43-B:752–757Google Scholar
  76. 76.
    Peeters CM, Leijs MJ, Reijman M, van Osch GJ, Bos PK (2013) Safety of intra-articular cell-therapy with culture-expanded stem cells in humans: a systematic literature review. Osteoarthr Cartil 21(10):1465–1473CrossRefGoogle Scholar
  77. 77.
    Perera JR, Gikas PD, Bentley G (2012) The present state of treatments for articular cartilage defects in the knee. Ann R Coll Surg Engl 94(6):381–387CrossRefGoogle Scholar
  78. 78.
    Petri M, Broese M, Simon A, Liodakis E, Ettinger M, Guenther D et al (2013) CaReS (MACT) versus microfracture in treating symptomatic patellofemoral cartilage defects: a retrospective matched-pair analysis. J Orthop Sci 18(1):38–44CrossRefGoogle Scholar
  79. 79.
    Reed ME, Villacis DC, Hatch GF 3rd, Burke WS, Colletti PM, Narvy SJ et al (2013) 3.0-Tesla MRI and arthroscopy for assessment of knee articular cartilage lesions. Orthopedics 36(8):e1060–e1064CrossRefGoogle Scholar
  80. 80.
    Resnick D, Vint V (1980) The “Tunnel” view in assessment of cartilage loss in osteoarthritis of the knee. Radiology 137(2):547–548CrossRefGoogle Scholar
  81. 81.
    Reverte-Vinaixa MM, Joshi N, Diaz-Ferreiro EW, Teixidor-Serra J, Dominguez-Oronoz R (2013) Medium-term outcome of mosaicplasty for grade III–IV cartilage defects of the knee. J Orthop Surg 21(1):4–9Google Scholar
  82. 82.
    Robert H (2011) Chondral repair of the knee joint using mosaicplasty. Orthop Traumatol Surg Res 97(4):418–429CrossRefGoogle Scholar
  83. 83.
    Rodriguez-Merchan EC (2013) Regeneration of articular cartilage of the knee. Rheumatol Int 33(4):837–845CrossRefGoogle Scholar
  84. 84.
    Roelofs AJ, Rocke JP, De Bari C (2013) Cell-based approaches to joint surface repair: a research perspective. Osteoarthr Cartil 21(7):892–900CrossRefGoogle Scholar
  85. 85.
    Rogers AD, Payne JE, Yu JS (2013) Cartilage imaging: a review of current concepts and emerging technologies. Semin Roentgenol 48(2):148–157CrossRefGoogle Scholar
  86. 86.
    Rosenberg TD, Paulos LE, Parker RD, Coward DB, Scott SM (1988) The forty-five-degree posteroanterior flexion weight-bearing radiograph of the knee. J Bone Joint Surg Am 70(10):1479–1483Google Scholar
  87. 87.
    Schuttler KF, Schenker H, Theisen C, Schofer MD, Getgood A, Roessler PP et al (2014) Use of cell-free collagen type I matrix implants for the treatment of small cartilage defects in the knee: clinical and magnetic resonance imaging evaluation. Knee Surg Sports Traumatol Arthrosc 22(6):1270–1276CrossRefGoogle Scholar
  88. 88.
    Sharma L, Chmiel JS, Almagor O, Dunlop D, Guermazi A, Bathon JM et al (2014) Significance of preradiographic magnetic resonance imaging lesions in persons at increased risk of knee osteoarthritis. Arthritis Rheumatol 66(7):1811–1819CrossRefGoogle Scholar
  89. 89.
    Solheim E, Hegna J, Oyen J, Harlem T, Strand T (2013) Results at 10 to 14 years after osteochondral autografting (mosaicplasty) in articular cartilage defects in the knee. Knee 20(4):287–290CrossRefGoogle Scholar
  90. 90.
    Stahl R, Krug R, Kelley DA, Zuo J, Ma CB, Majumdar S et al (2009) Assessment of cartilage-dedicated sequences at ultra-high-field MRI: comparison of imaging performance and diagnostic confidence between 3.0 and 7.0 T with respect to osteoarthritis-induced changes at the knee joint. Skelet Radiol 38(8):771–783CrossRefGoogle Scholar
  91. 91.
    Steadman JR, Briggs KK, Rodrigo JJ, Kocher MS, Gill TJ, Rodkey WG (2003) Outcomes of microfracture for traumatic chondral defects of the knee: average 11-year follow-up. Arthroscopy 19(5):477–484CrossRefGoogle Scholar
  92. 92.
    Takazawa K, Adachi N, Deie M, Kamei G, Uchio Y, Iwasa J et al (2012) Evaluation of magnetic resonance imaging and clinical outcome after tissue-engineered cartilage implantation: prospective 6-year follow-up study. J Orthop Sci 17(4):413–424CrossRefGoogle Scholar
  93. 93.
    Tuan RS, Chen AF, Klatt BA (2013) Cartilage regeneration. J Am Acad Orthop Surg 21(5):303–311Google Scholar
  94. 94.
    Turker M, Cetik O, Cirpar M, Durusoy S, Comert B (2015) Postarthroscopy osteonecrosis of the knee. Knee Surg Sports Traumatol Arthrosc 23(1):246–250CrossRefGoogle Scholar
  95. 95.
    Ulstein S, Aroen A, Rotterud JH, Loken S, Engebretsen L, Heir S (2014) Microfracture technique versus osteochondral autologous transplantation mosaicplasty in patients with articular chondral lesions of the knee: a prospective randomized trial with long-term follow-up. Knee Surg Sports Traumatol Arthrosc 22(6):1207–1215CrossRefGoogle Scholar
  96. 96.
    Vaquero J, Forriol F (2012) Knee chondral injuries: clinical treatment strategies and experimental models. Injury 43(6):694–705CrossRefGoogle Scholar
  97. 97.
    Versier G, Dubrana F (2011) Treatment of knee cartilage defect in 2010. Orthop Traumatol Surg Res 97(8 Suppl):S140–S153CrossRefGoogle Scholar
  98. 98.
    von Engelhardt LV, Kraft CN, Pennekamp PH, Schild HH, Schmitz A, von Falkenhausen M (2007) The evaluation of articular cartilage lesions of the knee with a 3-T magnet. Arthroscopy 23(5):496–502CrossRefGoogle Scholar
  99. 99.
    von Engelhardt LV, Schmitz A, Burian B, Pennekamp PH, Schild HH, Kraft CN et al (2008) 3-T MRI vs. arthroscopy for diagnostics of degenerative knee cartilage diseases: preliminary clinical results. Orthopade 37(9):914CrossRefGoogle Scholar
  100. 100.
    Wakitani S, Okabe T, Horibe S, Mitsuoka T, Saito M, Koyama T et al (2011) Safety of autologous bone marrow-derived mesenchymal stem cell transplantation for cartilage repair in 41 patients with 45 joints followed for up to 11 years and 5 months. J Tissue Eng Regen Med 5(2):146–150CrossRefGoogle Scholar
  101. 101.
    Wirth W, Duryea J, Hellio Le Graverand MP, John MR, Nevitt M, Buck RJ et al (2013) Direct comparison of fixed flexion, radiography and MRI in knee osteoarthritis: responsiveness data from the Osteoarthritis Initiative. Osteoarthr Cartil 21(1):117–125CrossRefGoogle Scholar
  102. 102.
    Wong S, Steinbach L, Zhao J, Stehling C, Ma CB, Link TM (2009) Comparative study of imaging at 3.0 T versus 1.5 T of the knee. Skelet Radiol 38(8):761–769CrossRefGoogle Scholar
  103. 103.
    Yan Z, Yang L, Guo L, Wang F (2014) Effectiveness of arthroscopic bipolar radiofrequency energy for lateral meniscus tear and cartilage injury. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 28(1):13–16Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Carlos A. Vilela
    • 1
    • 2
    • 3
    • 4
    Email author
  • Cristina Correia
    • 7
  • Joaquim Miguel Oliveira
    • 1
    • 2
  • Rui Amandi Sousa
    • 7
  • Rui Luís Reis
    • 1
    • 2
    • 7
  • João Espregueira-Mendes
    • 1
    • 2
    • 3
    • 5
    • 6
  1. 1.3B’s Research Group, European Institute of Excellence on Tissue Engineering and Regenerative MedicineUniversity of MinhoGuimarãesPortugal
  2. 2.ICVS/3B’s–PT Government Associate LaboratoryBraga, GuimarãesPortugal
  3. 3.Life and Health Sciences Research Institute (ICVS), School of Health SciencesUniversity of MinhoBragaPortugal
  4. 4.Orthopedic DepartmentCentro Hospitalar do Alto AveGuimarãesPortugal
  5. 5.Clínica do Dragão, Espregueira-Mendes Sports Centre, FIFA Medical Centre of Excellence and Dom Henrique Research CenterFC Porto StadiumPortoPortugal
  6. 6.Dom Henrique Research CentrePortoPortugal
  7. 7.Stemmatters, Biotecnologia e Medicina Regenerativa SAGuimarãesPortugal

Personalised recommendations