Ligament Tissue Engineering

  • Wasim KhanEmail author
Part of the Studies in Mechanobiology, Tissue Engineering and Biomaterials book series (SMTEB, volume 21)


Ligaments are commonly injured in the knee joint, and have a poor capacity for healing due to their relative avascularity. Ligament reconstruction is well established for injuries such as anterior cruciate ligament rupture, however the use of autografts and allografts for ligament reconstruction are associated with complications, and outcomes are variable. Ligament tissue engineering using stem cells, growth factors and scaffolds is a novel technique that has the potential to provide an unlimited source of tissue. In this chapter we discuss the role of tissue engineering in dealing with ligament injuries and provide an overview of in vitro and in vivo studies.


Anterior Cruciate Ligament Anterior Cruciate Ligament Reconstruction Platelet Derive Growth Factor Anterior Cruciate Ligament Injury Medial Collateral Ligament 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Al-Rashid M, Khan WS (2011) Stem cells and ligament repair. In: Berhardt L (ed) Advances in medicine and biology. Nova Science Publishers Inc, New York, pp 343–347Google Scholar
  2. 2.
    Altman GH, Horan RL, Lu HH, Moreau J, Martin I, Richmond JC, Kaplan DL (2002) Silk matrix for tissue engineered anterior cruciate ligaments. Biomaterials 23(20):4131–4141CrossRefGoogle Scholar
  3. 3.
    Altman G, Lu H, Horan R, Calabro T, Ryder D, Kaplan D (2002) Advanced bioreactor with controlled application of multi-dimensional strain for tissue engineering. J Biomech Eng 124:742–749CrossRefGoogle Scholar
  4. 4.
    Altman GH, Horan RL, Martin I, Farhadi J, Stark PR, Volloch V, Richmond JC, Vunjak-Novakovic G, Kaplan DL (2002) Cell differentiation by mechanical stress. FASEB J 16(2):270–272Google Scholar
  5. 5.
    Altman G, Lu H, Horan R, Calabro T, Ryder D, Kaplan D (2002) Advanced bioreactor with controlled application of multi-dimensional strain for tissue engineering. J Biomech Eng 124:742–749CrossRefGoogle Scholar
  6. 6.
    Anitua E, Andia I, Ardanza B, Nurden P, Nurden AT (2004) Autologous platelets as a source of proteins for healing and tissue regeneration. Thromb Haemost 91(1):4–15Google Scholar
  7. 7.
    Argona J, Parsons JR, Alexander H, Weiss AB (1984) Medial collateral ligament replacement with a partially absorbable tissues scaffold. Am J Sport Med 11(4):228–233CrossRefGoogle Scholar
  8. 8.
    Badylak S, Arnoczky S, Plouher P, Haut R, Mendenhall V, Clarke R, Horvath C (2009) Naturally occurring extracellular matrix as a scaffold for musculoskeletal repair. Clin Orthop Relat Res 367S:S333–S343Google Scholar
  9. 9.
    Ball SG, Shuttleworth AC, Kielty CM (2004) Direct cell contact influences bone marrow mesenchymal stem cell fate: Int.J. Biochem Cell Biol 36(4):714–727CrossRefGoogle Scholar
  10. 10.
    Bellincampi LD, Closkey RF, Prasad R, Zawadsky JP, Dunn MG (1998) Viability of fibroblast-seeded ligament analogs after autogenous implantation. J Orthop Res 16(4):414–420CrossRefGoogle Scholar
  11. 11.
    Beyth S, Borovsky Z, Mevorach D, Liebergall M, Gazit Z, Aslan H, Galun E, Rachmilewitz J (2005) Human mesenchymal stem cells alter antigen-presenting cell maturation and induce T-cell unresponsiveness. Blood 105(5):2214–2219CrossRefGoogle Scholar
  12. 12.
    Bissell L, Tibrewal S, Sahni V, Khan WS (2015) Growth factors and platelet rich plasma in anterior cruciate ligament reconstruction. Curr Stem Cell Res Ther 10(1):19–25CrossRefGoogle Scholar
  13. 13.
    Caudwell M, Crowley C, Khan WS, Wong JM (2015) Systematic review of preclinical and clinical studies on scaffold use in knee ligament regeneration. Curr Stem Cell Res Ther 10(1):11–18CrossRefGoogle Scholar
  14. 14.
    Chamberlain G, Fox J, Ashton B, Middleton J (2007) Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells 25(11):2739–2749CrossRefGoogle Scholar
  15. 15.
    Chen J, Xu J, Wang A, Zheng M (2009) Scaffolds for tendon and ligament repair: review of the efficacy of commercial products. Expert Rev Med Devices 6(1):61–73CrossRefGoogle Scholar
  16. 16.
    Chen X, Qi YY, Wang LL, Yin Z, Yin GL, Zou XH, Ouyang HW (2008) Ligament regeneration using a knitted silk scaffold combined with collagen matrix. Biomaterials 29(27):3683–3692CrossRefGoogle Scholar
  17. 17.
    Cheng MT, Liu CL, Chen TH, Lee OK (2010) Comparison of potentials between stem cells isolated from human anterior cruciate ligament and bone marrow for ligament tissue engineering. Tissue Eng Part A 16(7):2237–2253CrossRefGoogle Scholar
  18. 18.
    Chimutengwende-Gordon M, Khan WS (2012) Stem cells in ligament tissue engineering. In: Mahato RI, Danquah M (eds) Emerging trends in cell and gene therapy. Springer, Heidelberg. ISBN 978-1-62703-417-3Google Scholar
  19. 19.
    Chimutengwende-Gordon M, Khan WS (2012) Advances in the use of stem cells and tissue engineering applications in bone repair. Curr Stem Cell Res Ther 7(2):122–126CrossRefGoogle Scholar
  20. 20.
    Cooper JA Jr, Bailey LO, Carter JN, Castiglioni CE, Kofron MD, Ko FK, Laurencin CT (2006) Evaluation of the anterior cruciate ligament, medial collateral ligament, achilles tendon and patellar tendon as cell sources for tissue-engineered ligament. Biomaterials 27(13):2747–2754CrossRefGoogle Scholar
  21. 21.
    Cooper JA, Sahota JA Jr, Gorum WJ 2nd, Carter J, Doty SB, Laurencin CT (2007) Biomimetic tissue-engineered anterior cruciate ligament replacement. Proc Natl Acad Sci USA 104(9):3049–3054CrossRefGoogle Scholar
  22. 22.
    de Loes M, Dahlstedt LJ, Thomee R (2000) A 7-year study on risks and costs of knee injuries in male and female youth participants in 12 sports. Scand J Med Sci Sports 10(2):90–97CrossRefGoogle Scholar
  23. 23.
    Dheerendra SK, Khan WS, Singhal R, Shivarathre DG, Pydisetty R, Johnstone DJ (2012) Anterior cruciate ligament graft choices: a review of current concepts. Open Orthop J 6(2):281–286CrossRefGoogle Scholar
  24. 24.
    Dhinsa BS, Mahapatra AN, Khan WS (2015) Sources of adult mesenchymal stem cells for ligament and tendon tissue engineering. Curr Stem Cell Res Ther 10(1):26–30CrossRefGoogle Scholar
  25. 25.
    Dunn MG, Liesch JB, Tiku ML, Zawadsky JP (1995) Development of fibroblast-seeded ligament analogs for ACL reconstruction. J Biomed Mater Res 29(11):1363–1371CrossRefGoogle Scholar
  26. 26.
    Fan H, Liu H, Wong EJW, Toh SL, Goh JCH (2008) In vivo study of anterior cruciate ligament regeneration using mesenchymal stem cells and silk scaffold. Biomaterials 2008(29):3324–3337CrossRefGoogle Scholar
  27. 27.
    Fan H, Liu H, Toh SL, Goh JC (2008) Enhanced differentiation of mesenchymal stem cells co-cultured with ligament fibroblasts on gelatin/silk fibroin hybrid scaffold. Biomaterials 29(8):1017–1027CrossRefGoogle Scholar
  28. 28.
    Frank C (2004) Ligament structure, physiology and function. J Musculoskelet Neuronal Interact 4(2):199–201Google Scholar
  29. 29.
    Freeman J, Kwansa A (2008) Recent advancements in ligament tissue engineering: the use of various techniques and materials for ACL repair. Recent Pat Biomed Eng 1:18–23CrossRefGoogle Scholar
  30. 30.
    Fung DT, Ng GY, Leung MC, Tay DK (2003) Effects of a therapeutic laser on the ultrastructural morphology of repairing medial collateral ligament in a rat model. Lasers Surg Med 32(4):286–293CrossRefGoogle Scholar
  31. 31.
    Ge Z, Goh JC, Lee EH (2005) Selection of cell source for ligament tissue engineering. Cell Transpl 14(8):573–583CrossRefGoogle Scholar
  32. 32.
    Ge Z, Yang F, Goh JC, Ramakrishna S, Lee EH (2006) Biomaterials and scaffolds for ligament tissue engineering. J Biomed Mater Res A 77(3):639–652CrossRefGoogle Scholar
  33. 33.
    Gianotti SM, Marshall SW, Hume PA, Bunt L (2009) Incidence of anterior cruciate ligament injury and other knee ligament injuries: a national population-based study. J Sci Med Sports 12:622–627CrossRefGoogle Scholar
  34. 34.
    Goh JC, Ouyang HW, Teoh SH, Chan CK, Lee EH (2003) Tissue-engineering approach to the repair and regeneration of tendons and ligaments. Tissue Eng 9(Suppl 1):S31–S44CrossRefGoogle Scholar
  35. 35.
    Hildebrand KA, Deie M, Allen CR, Smith DW, Georgescu HI, Evans CH, Robbins PD, Woo SL (1999) Early expression of marker genes in the rabbit medial collateral and anterior cruciate ligaments: the use of different viral vectors and the effects of injury. J Orthop Res 17(1):37–42CrossRefGoogle Scholar
  36. 36.
    Hoffman A, Gross G (2006) Tendon and ligament engineering:from cell biology to in vivo application. Regen Med 1(4):563–574CrossRefGoogle Scholar
  37. 37.
    Joshi S, Mastrangelo A, Magarian E, Fleming BC, Murray MM (2009) Collagen-platelet composite enhances biomechanical and histologic healing of the porcine ACL. Am J Sports Med 37(12):2401–2410CrossRefGoogle Scholar
  38. 38.
    Ju YJ, Tohyama H, Kondo E, Yoshikawa T, Muneta T, Shinomiya K, et al (2006) Effects of local administration of vascular endothelial growth factor on properties of the in situ frozen-thawed anterior cruciate ligament in rabbits. Am J Sports Med 34(1):84–91. PubMed PMID: 16210580. Epub 2005/10/08. engGoogle Scholar
  39. 39.
    Kahn CJ, Vaquette C, Rahouadj R, Wang X (2008) A novel bioreactor for ligament tissue engineering. Biomed Mater Eng 18(4–5):283–287Google Scholar
  40. 40.
    Kanitkar M, Tailor HD, Khan WS (2011) The use of growth factors and mesenchymal stem cells in orthopaedics. Open Orthop J 5:271CrossRefGoogle Scholar
  41. 41.
    Khan WS, Malik AA, Hardingham TE (2009) Stem cell applications and tissue engineering approaches in surgical practice. J Perioper Pract 19(4):130–135Google Scholar
  42. 42.
    Khan WS, Adesida AB, Tew SR, Lowe ET, Hardingham TE (2010) Bone marrow derived mesenchymal stem cells express the pericyte marker 3G5 in culture and show enhanced chondrogenesis in hypoxic conditions. J Orthop Res 28(6):834–840Google Scholar
  43. 43.
    Khan WS, Hardingham TE (2012) Mesenchymal stem cells, sources of cells and differentiation potential. J Stem Cells 7(2):75–85Google Scholar
  44. 44.
    Khan WS, Hardingham TE (2012) The characterisation of mesenchymal stem cells: a stem cell is not a stem cell is not a stem cell. J Stem Cells 7(2):87–95Google Scholar
  45. 45.
    Khan WS, Adesida AB, Tew SR, Longo UG, Hardingham TE (2012) Fat pad-derived mesenchymal stem cells as a potential source for cell-based adipose tissue repair strategies. Cell Prolif 45(2):111–120CrossRefGoogle Scholar
  46. 46.
    Kondo E, Yasuda K, Yamanaka M, Minami A, Tohyama H (2005) Effects of administration of exogenous growth factors on biomechanical properties of the elongation-type anterior cruciate ligament injury with partial laceration. Am J Sports Med 33(2):188–196CrossRefGoogle Scholar
  47. 47.
    Laboute E, Savalli L, Puig P, Trouve P, Sabot G, Monnier G (2010) Analysis of return to competition and repeat rupture for 298 anterior cruciate ligament reconstructions with patellar or hamstring tendon autograft in sportspeople. Ann Phys Rehabil Med 53(10):598–614CrossRefGoogle Scholar
  48. 48.
    Le Blanc K, Ringden O (2005) Immunobiology of human mesenchymal stem cells and future use in hematopoietic stem cell transplantation: Biol. Blood Marrow Transpl 11(5):321–334CrossRefGoogle Scholar
  49. 49.
    Lee IC, Wang JH, Lee YT, Young TH (2007) The differentiation of mesenchymal stem cells by mechanical stress or/and co-culture system. Biochem Biophys Res Commun 352(1):147–152CrossRefGoogle Scholar
  50. 50.
    Letson AK, Dahners LE (1994) The effect of combinations of growth factors on ligament healing. Clin Orthop Relat Res 308:207–212Google Scholar
  51. 51.
    Liljensten E, Gisselfält K, Edberg B, Bertilsson H, Flodin P (2002) Studies of pol-yurethane urea bands for ACL reconstruction. J Mater Sci 13(4):351–359Google Scholar
  52. 52.
    Lim JK, Hui J, Li L, Thambyah A, Goh J, Lee EH (2004) Enhancement of tendon graft osteointegration using mesenchymal stem cells in a rabbit model of anterior cruciate ligament reconstruction. Arthroscopy 20(9):899–910CrossRefGoogle Scholar
  53. 53.
    Lodish H, Berk A, Zipursky SL, Matsudaira P, Baltimore D, Darnell J (2000) Section 22.3 Collagen: the fibrous protein of the matrix. In: Molecular cell biology, 4th edn. Freeman WH, New YorkGoogle Scholar
  54. 54.
    Giuseppe Longo U, Loppini M, Berton A, La Verde L, Khan WS, Denaro V (2012) Stem cells from umbilical cord and placenta for musculoskeletal tissue engineering. Curr Stem Cell Res Ther 7(4):272–281CrossRefGoogle Scholar
  55. 55.
    Giuseppe Longo U, Rizzello G, Berton A, Fumo C, Maltese L, Khan WS, Denaro V (2013) Synthetic grafts for anterior cruciate ligament reconstruction. Curr Stem Cell Res Ther 8(6):429–437CrossRefGoogle Scholar
  56. 56.
    Lou J, Tu Y, Burns M, Silva MJ, Manske P (2001) BMP-12 gene transfer augmentation of lacerated tendon repair. J Orthop Res 19(6):1199–1202CrossRefGoogle Scholar
  57. 57.
    Mabvuure NT, Malahias M, Haddad B, Hindocha S, Khan WS (2014) State of the art regarding the management of multiligamentous injuries of the knee. Open Orthop J 8:215Google Scholar
  58. 58.
    Madry H, Kohn D, Cucchiarini M (2013) Direct FGF-2 gene transfer via recombinant adeno-associated virus vectors stimulates cell proliferation, collagen production, and the repair of experimental lesions in the human ACL. Am J Sports Med 41(1):194–202. PubMed PMID: 23172005. EnglishGoogle Scholar
  59. 59.
    Mafi P, Hindocha S, Mafi R, Khan WS (2012) Evaluation of biological protein-based collagen scaffolds in cartilage and musculoskeletal tissue engineering—a systematic review of the literature. Curr Stem Cell Res Ther 7(4):302–309CrossRefGoogle Scholar
  60. 60.
    Magarian EM, Fleming BC, Harrison SL, Mastrangelo AN, Badger GJ, Murray MM (2010) Delay of 2 or 6 weeks adversely affects the functional outcome of augmented primary repair of the porcine anterior cruciate ligament. Am J Sports Med 38(12):2528–2534CrossRefGoogle Scholar
  61. 61.
    Mastrangelo AN, Vavken P, Fleming BC, Harrison SL, Murray MM (2011) Reduced platelet concentration does not harm PRP effectiveness for ACL repair in a porcine in vivo model. J Orthop Res 29(7):1002–1007CrossRefGoogle Scholar
  62. 62.
    Meaney Murray M, Rice K, Wright RJ, Spector M (2003) The effect of selected growth factors on human anterior cruciate ligament cell interactions with a three-dimensional collagen-GAG scaffold. J Orthop Res 21(2):238–244CrossRefGoogle Scholar
  63. 63.
    Menetrey J, Kasemkijwattana C, Day CS, Bosch P, Fu FH, Moreland MS, Huard J (1999) Direct-, fibroblast- and myoblast-mediated gene transfer to the anterior cruciate ligament. Tissue Eng 5(5):435–442CrossRefGoogle Scholar
  64. 64.
    Nin JR, Gasque GM, Azcarate AV, Beola JD, Gonzalez MH (2009) Has platelet-rich plasma any role in anterior cruciate ligament allograft healing? Arthroscopy 25(11):1206–1213CrossRefGoogle Scholar
  65. 65.
    Nishmoto H, Kokubu T, Inui A, Mifune Y, Nishida K, Fujioka H, Yokota K, Hiwa C, Kurosaka M (2012) Ligament regeneration using an absorbable stent-shaped poly-l-lactic acid scaffold in a rabbit model. Int Orthop (SICOT) 36:2379–2386CrossRefGoogle Scholar
  66. 66.
    Oe K, Kushida T, Okamoto N, Umeda M, Nakamura T, Ikehara S, Iida H (2011) New strategies for anterior cruciate ligament partial rupture using bone marrow transplantation in rats. Stem Cells Dev 20(4):671–679CrossRefGoogle Scholar
  67. 67.
    Ong E, Chimutengwende-Gordon M, Khan W (2013) Stem cell therapy for knee ligament, articular cartilage and meniscal injuries. Curr Stem Cell Res Ther 8(6):422–428CrossRefGoogle Scholar
  68. 68.
    Oragui E, Nannaparaju M, Khan WS (2011) The role of bioreactors in tissue engineering for musculoskeletal applications. Open Orthop J 5(Suppl 2):267–270CrossRefGoogle Scholar
  69. 69.
    Palmer MP, Abreu EL, Mastrangelo A, Murray MM (2009) Injection temperature significantly affects in vitro and in vivo performance of collagen-platelet scaffolds. J Orthop Res 27(7):964–971CrossRefGoogle Scholar
  70. 70.
    Papoutsidakis A (2011) Predisposing factors for anterior cruciate ligament injury. Br J Sports Med 45:e2Google Scholar
  71. 71.
    Pascher A et al (2004) Enhanced repair of the anterior cruciate ligament by in situ gene transfer: evaluation in an in vitro model. Mol Ther 10(2):327–336CrossRefGoogle Scholar
  72. 72.
    Pastides P, Khan W (2011) Tendon and ligament injuries: the evolving role of stem cells and tissue engineering. Br J Med Med Res 1(4):569–580CrossRefGoogle Scholar
  73. 73.
    Petrou G, Chardouvelis C, Kouzoupis A, Dermon A, Petrou H, Tilkeridis C, Gavras M (2006) Reconstruction of the anterior cruciate ligament using the polyester ABC ligament scaffold. J Bone Joint Surg [Br] 88-B:893–899CrossRefGoogle Scholar
  74. 74.
    Rizzello G, Longo UG, Petrillo S, Lamberti A, Khan WS, Maffulli N, Denaro V (2012) Growth factors and stem cells for the management of anterior cruciate ligament tears. Open Orthop J 6:525–530CrossRefGoogle Scholar
  75. 75.
    Shelton WR, Fagan BC (2011) Autografts commonly used in anterior cruciate ligament reconstruction. J Am Acad Orthop Surg 19(5):259–264CrossRefGoogle Scholar
  76. 76.
    Siddiqui NA, Wong JML, Khan WS, Hazlerigg A (2010) Stem cells for tendon and ligament tissue engineering and regeneration. J Stem Cells 5(4):187–194Google Scholar
  77. 77.
    Singh J, Onimowo J, Khan WS (2015) Bone marrow derived stem cells in trauma and orthopaedics: a review of the current trend. Curr Stem Cell Res Ther 10(1):37–42CrossRefGoogle Scholar
  78. 78.
    Steinert AF, Weber M, Kunz M, Palmer GD, Noth U, Evans CH, Murray MM (2008) In situ IGF-1 gene delivery to cells emerging from the injured anterior cruciate ligament. Biomaterials 29(7):904–916CrossRefGoogle Scholar
  79. 79.
    Teh TK, Toh SL, Goh JC (2011) Aligned hybrid silk scaffold for enhanced differentiation of mesenchymal stem cells into ligament fibroblasts. Tissue Eng Part C Methods 17(6):687–703CrossRefGoogle Scholar
  80. 80.
    Thanabalasundaram G, Arumalla N, Tailor HD, Khan WS (2012) Regulation of differentiation of mesenchymal stem cells into musculoskeletal cells. Curr Stem Cell Res Ther 7(2):95–102CrossRefGoogle Scholar
  81. 81.
    Tremblay P et al (2011) Potential of skin fibroblasts for application to anterior cruciate ligament tissue engineering. Cell Transpl 20(4):535–542CrossRefGoogle Scholar
  82. 82.
    Van Eijk F, Saris DB, Riesle J, Willems WJ, Van Blitterswijk CA, Verbout AJ, Dhert WJ (2004) Tissue engineering of ligaments: a comparison of bone marrow stromal cells, anterior cruciate ligament, and skin fibroblasts as cell source. Tissue Eng 10(5–6):893–903CrossRefGoogle Scholar
  83. 83.
    Vunjak-Novakovic G, Altman G, Horan R, Kaplan DL (2004) Tissue engineering of ligaments. Annu Rev Biomed Eng 6:131–156CrossRefGoogle Scholar
  84. 84.
    Wang Y, Tang Z, Xue R, Singh GK, Lv Y, Shi K et al (2011) TGF-beta1 promoted MMP-2 mediated wound healing of anterior cruciate ligament fibroblasts through NF-B. Connect Tissue Res 52(3):218–225CrossRefGoogle Scholar
  85. 85.
    Wei X, Mao Z, Hou Y, Lin L, Xue T, Chen L, Wang H, Yu C (2011) Local administration of TGFbeta-1/VEGF165 gene-transduced bone mesenchymal stem cells for Achilles allograft replacement of the anterior cruciate ligament in rabbits. Biochem Biophys Res Commun 406(2):204–210CrossRefGoogle Scholar
  86. 86.
    Weiler A, Forster C, Hunt P, Falk R, Jung T, Unterhauser FN et al (2004) The influence of locally applied platelet-derived growth factor-BB on free tendon graft remodeling after anterior cruciate ligament reconstruction. Am J Sports Med 32(4):881–891CrossRefGoogle Scholar
  87. 87.
    Wong JM, Khan T, Jayadev CS, Khan WS, Johnstone DJ (2012) Anterior cruciate ligament rupture and osteoarthritis progression. Open Orthop J 6(2):295–300CrossRefGoogle Scholar
  88. 88.
    Woo SL, Hildebrand K, Watanabe N, Fenwick JA, Papageorgiou CD, Wang JH (1999) Tissue engineering of ligament and tendon healing. Clin Orthop Relat Res 367(Suppl):S312–S323CrossRefGoogle Scholar
  89. 89.
    Yamazaki S, Yasuda K, Tomita F, Tohyama H, Minami A (2005) The effect of transforming growth factor-beta1 on intraosseous healing of flexor tendon autograft replacement of anterior cruciate ligament in dogs. Arthroscopy 21(9):1034–1041CrossRefGoogle Scholar
  90. 90.
    Yates EW, Rupani A, Foley GT, Khan WS, Cartmell S, Anand SJ (2012) Ligament tissue engineering and its potential role in anterior cruciate ligament reconstruction. Stem Cells Int, p 438125Google Scholar
  91. 91.
    Yilgor C, Yilgor HP, Huri G (2012) Tissue engineering strategies in ligament regeneration. Stem Cells Int, p 374676Google Scholar
  92. 92.
    Yoshikawa T, Tohyama H, Enomoto H, Matsumoto H, Toyama Y, Yasuda K (2006) Expression of vascular endothelial growth factor and angiogenesis in patellar tendon grafts in the early phase after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 14(9):804–810CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Institute of Orthopaedics and Musculoskeletal Sciences, Royal National Orthopaedic HospitalUniversity College LondonStanmoreUK

Personalised recommendations