Biomimetic Approaches for the Engineering of Osteochondral Tissues

  • Le-Ping YanEmail author
Part of the Studies in Mechanobiology, Tissue Engineering and Biomaterials book series (SMTEB, volume 21)


Osteochondral defects induced by trauma or pathology remain a big challenge in orthopedics. These defects comprise injuries in both the articular cartilage and the subchondral bone. Due to the limited regeneration ability of articular cartilage, this kind of defects is normally irreparable and would gradually deteriorate toward osteoarthritis which requires surgical intervention. The current clinical treatments for osteochondral defects, such as total joint replacement and osteochondral autograft transplantation, are not ideal long-term solutions for this problem. Tissue engineering and regenerative medicine provides a possible and prospective curative strategy for this clinical hinder. Nevertheless, In order to successfully solve this problem, there are still many basic and critical questions must be answered. These include the optimization on scaffold’s composition and structure, selection of suitable cell source, modulation of primary/stem cell fate or engineered osteochondral tissue, incorporation of bioactive factors, and spatial regeneration of the chondral layer, subchondral layers and the interface. Biomimetic strategy has been employed to explore these fields and exciting progresses have been achieved. This chapter summarizes these interesting advances of the pre-clinical studies on engineering of osteochondral tissue in the last 5 years. Special attentions were given to the development of biomimetic layered scaffolds with dependences on composition, cell source, or bioactive factors. In addition, cell fate regulation, external stimuli and interface regeneration were discussed. New insights and promising directions for the future study in osteochondral regeneration were also provided.


Subchondral Bone Autologous Chondrocyte Implantation Biphasic Calcium Phosphate PLGA Scaffold Bioactive Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Mano JF, Reis RL (2007) Osteochondral defects: present situation and tissue engineering approaches. J Tissue Eng Regen Med 1(4):261–273. doi: 10.1002/term.37 CrossRefGoogle Scholar
  2. 2.
    Zengerink M, Struijs PA, Tol JL, van Dijk CN (2010) Treatment of osteochondral lesions of the talus: a systematic review. Knee Surg Sports Traumatol Arthrosc 18(2):238–246. doi: 10.1007/s00167-009-0942-6 CrossRefGoogle Scholar
  3. 3.
    Yan LP, Oliveira JM, Oliveira AL, Reis RL (2015) Current concepts and challenges in osteochondral tissue engineering and regenerative medicine. ACS Biomater Sci Eng 1(4):183–200. doi: 10.1021/ab500038y CrossRefGoogle Scholar
  4. 4.
    Gomoll AH, Madry H, Knutsen G, van Dijk N, Seil R, Brittberg M, Kon E (2010) The subchondral bone in articular cartilage repair: current problems in the surgical management. Knee Surg Sports Traumatol Arthrosc 18(4):434–447. doi: 10.1007/s00167-010-1072-x CrossRefGoogle Scholar
  5. 5.
    Woolf AD, Pfleger B (2003) Burden of major musculoskeletal conditions. Bull World Health Organ 81:646–656.
  6. 6.
    Zhuo Q, Yang W, Chen J, Wang Y (2012) Metabolic syndrome meets osteoarthritis. Nat Rev Rheumatol 8(12):729–737. doi: 10.1038/nrrheum.2012.135
  7. 7.
    Cedraschi C, Delézay S, Marty M, Berenbaum F, Bouhassira D, Henrotin Y, Laroche F, Perrot S (2013) “Let’s talk about oa pain”: a qualitative analysis of the perceptions of people suffering from OA. Towards the development of a specific pain OA-related questionnaire, the Osteoarthritis Symptom Inventory Scale (OASIS). PLoS ONE 8(11):e79988. doi: 10.1371/journal.pone.0079988 CrossRefGoogle Scholar
  8. 8.
    Lim K, Lau CS (2011) Perception is everything: OA is exciting. Int J Rheum Dis 14(2):111–112. doi: 10.1111/j.1756-185X.2011.01614.x CrossRefGoogle Scholar
  9. 9.
    Minas T, Gomoll AH, Rosenberger R, Royce RO, Bryant T (2009) Increased failure rate of autologous chondrocyte implantation after previous treatment with marrow stimulation techniques. Am J Sports Med 37(5):902–908. doi: 10.1177/0363546508330137 CrossRefGoogle Scholar
  10. 10.
    Langer R, Vacanti JP (1993) Tissue engineering. Science 260(5110):920–926. doi: 10.1126/science.8493529
  11. 11.
    Giannini S, Buda R, Vannini F, Di Caprio F, Grigolo B (2008) Arthroscopic autologous chondrocyte implantation in osteochondral lesions of the talus: Surgical technique and results. Am J Sports Med 36(5):873–880. doi: 10.1177/0363546507312644
  12. 12.
    Bedi A, Foo LF, Williams Iii RJ, Potter HG (2010) The maturation of synthetic scaffolds for osteochondral donor sites of the knee: an MRI and T2-mapping analysis. Cartilage 1(1):20–28. doi: 10.1177/1947603509355970
  13. 13.
    Giza E, Sullivan M, Ocel D, Lundeen G, Mitchell ME, Veris L, Walton J (2010) Matrix-induced autologous chondrocyte implantation of talus articular defects. Foot Ankle Int 31(9):747–753. doi: 10.3113/fai.2010.0747 CrossRefGoogle Scholar
  14. 14.
    Lee JM, Kim JD, Oh EJ, Oh SH, Lee JH, Im GI (2014) PD98059-impregnated functional PLGA scaffold for direct tissue engineering promotes chondrogenesis and prevents hypertrophy from mesenchymal stem cells. Tissue Eng Part A 20(5–6):982–991. doi: 10.1089/ten.tea.2013.0290 CrossRefGoogle Scholar
  15. 15.
    Chen P, Tao J, Zhu S, Cai Y, Mao Q, Yu D, Dai J, Ouyang H (2015) Radially oriented collagen scaffold with SDF-1 promotes osteochondral repair by facilitating cell homing. Biomaterials 39:114–123. doi: 10.1016/j.biomaterials.2014.10.049 CrossRefGoogle Scholar
  16. 16.
    Nukavarapu SP, Dorcemus DL (2013) Osteochondral tissue engineering: current strategies and challenges. Biotechnol Adv 31(5):706–721. doi: 10.1016/j.biotechadv.2012.11.004 CrossRefGoogle Scholar
  17. 17.
    Oliveira JM, Rodrigues MT, Silva SS, Malafaya PB, Gomes ME, Viegas CA, Dias IR, Azevedo JT, Mano JF, Reis RL (2006) Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: scaffold design and its performance when seeded with goat bone marrow stromal cells. Biomaterials 27(36):6123–6137. doi: 10.1016/j.biomaterials.2006.07.034 CrossRefGoogle Scholar
  18. 18.
    Yan LP, Silva-Correia J, Oliveira MB, Vilela C, Pereira H, Sousa RA, Mano JF, Oliveira AL, Oliveira JM, Reis RL (2015) Bilayered silk/silk-nanoCaP scaffolds for osteochondral tissue engineering: in vitro and in vivo assessment of biological performance. Acta Biomater 12:227–241. doi: 10.1016/j.actbio.2014.10.021 CrossRefGoogle Scholar
  19. 19.
    Im GI, Ahn JH, Kim SY, Choi BS, Lee SW (2010) A hyaluronate-atelocollagen/beta-tricalcium phosphate-hydroxyapatite biphasic scaffold for the repair of osteochondral defects: a porcine study. Tissue Eng Part A 16(4):1189–1200. doi: 10.1089/ten.TEA.2009.0540 CrossRefGoogle Scholar
  20. 20.
    Cui W, Wang Q, Chen G, Zhou S, Chang Q, Zuo Q, Ren K, Fan W (2011) Repair of articular cartilage defects with tissue-engineered osteochondral composites in pigs. J Biosci Bioeng 111(4):493–500. doi: 10.1016/j.jbiosc.2010.11.023 CrossRefGoogle Scholar
  21. 21.
    Sosio C, Di Giancamillo A, Deponti D, Gervaso F, Scalera F, Melato M, Campagnol M, Boschetti F, Nonis A, Domeneghini C, Sannino A, Peretti GM (2015) Osteochondral repair by a novel interconnecting collagen-hydroxyapatite substitute: a large-animal study. Tissue Eng Part A 21(3–4):704–715. doi: 10.1089/ten.TEA.2014.0129
  22. 22.
    Giannoni P, Lazzarini E, Ceseracciu L, Barone AC, Quarto R, Scaglione S (2012) Design and characterization of a tissue-engineered bilayer scaffold for osteochondral tissue repair. J Tissue Eng Regen Med 9(10):1182–1192. doi: 10.1002/term.1651
  23. 23.
    Ho STB, Cool SM, Hui JH, Hutmacher DW (2010) The influence of fibrin based hydrogels on the chondrogenic differentiation of human bone marrow stromal cells. Biomaterials 31(1):38–47. doi: 10.1016/j.biomaterials.2009.09.021
  24. 24.
    Zhang W, Chen J, Tao J, Hu C, Chen L, Zhao H, Xu G, Heng BC, Ouyang HW (2013) The promotion of osteochondral repair by combined intra-articular injection of parathyroid hormone-related protein and implantation of a bi-layer collagen-silk scaffold. Biomaterials 34(25):6046–6057. doi: 10.1016/j.biomaterials.2013.04.055 CrossRefGoogle Scholar
  25. 25.
    Scotti C, Wirz D, Wolf F, Schaefer DJ, Burgin V, Daniels AU, Valderrabano V, Candrian C, Jakob M, Martin I, Barbero A (2010) Engineering human cell-based, functionally integrated osteochondral grafts by biological bonding of engineered cartilage tissues to bony scaffolds. Biomaterials 31(8):2252–2259. doi: 10.1016/j.biomaterials.2009.11.110 CrossRefGoogle Scholar
  26. 26.
    Grayson WL, Bhumiratana S, Grace Chao PH, Hung CT, Vunjak-Novakovic G (2010) Spatial regulation of human mesenchymal stem cell differentiation in engineered osteochondral constructs: effects of pre-differentiation, soluble factors and medium perfusion. Osteoarthr Cartil 18(5):714–723. doi: 10.1016/j.joca.2010.01.008 CrossRefGoogle Scholar
  27. 27.
    Lam J, Lu S, Meretoja VV, Tabata Y, Mikos AG, Kasper FK (2014) Generation of osteochondral tissue constructs with chondrogenically and osteogenically predifferentiated mesenchymal stem cells encapsulated in bilayered hydrogels. Acta Biomater 10(3):1112–1123. doi: 10.1016/j.actbio.2013.11.020 CrossRefGoogle Scholar
  28. 28.
    Jurgens WJ, Kroeze RJ, Zandieh-Doulabi B, van Dijk A, Renders GA, Smit TH, van Milligen FJ, Ritt MJ, Helder MN (2013) One-step surgical procedure for the treatment of osteochondral defects with adipose-derived stem cells in a caprine knee defect: a pilot study. Biores Open Access 2(4):315–325. doi: 10.1089/biores.2013.0024 CrossRefGoogle Scholar
  29. 29.
    Khanarian NT, Jiang J, Wan LQ, Mow VC, Lu HH (2012) A hydrogel-mineral composite scaffold for osteochondral interface tissue engineering. Tissue Eng Part A 18(5–6):533–545. doi: 10.1089/ten.TEA.2011.0279 CrossRefGoogle Scholar
  30. 30.
    Khanarian NT, Haney NM, Burga RA, Lu HH (2012) A functional agarose-hydroxyapatite scaffold for osteochondral interface regeneration. Biomaterials 33(21):5247–5258. doi: 10.1016/j.biomaterials.2012.03.076 CrossRefGoogle Scholar
  31. 31.
    Cheng HW, Luk KDK, Cheung KMC, Chan BP (2011) In vitro generation of an osteochondral interface from mesenchymal stem cell-collagen microspheres. Biomaterials 32(6):1526–1535. doi: 10.1016/j.biomaterials.2010.10.021 CrossRefGoogle Scholar
  32. 32.
    Abarrategi A, Lopiz-Morales Y, Ramos V, Civantos A, Lopez-Duran L, Marco F, Lopez-Lacomba JL (2010) Chitosan scaffolds for osteochondral tissue regeneration. J Biomed Mater Res A 95(4):1132–1141. doi: 10.1002/jbm.a.32912 CrossRefGoogle Scholar
  33. 33.
    Igarashi T, Iwasaki N, Kasahara Y, Minami A (2010) A cellular implantation system using an injectable ultra-purified alginate gel for repair of osteochondral defects in a rabbit model. J Biomed Mater Res, Part A 94(3):844–855. doi: 10.1002/jbm.a.32762
  34. 34.
    Bernstein A, Niemeyer P, Salzmann G, Suedkamp NP, Hube R, Klehm J, Menzel M, von Eisenhart-Rothe R, Bohner M, Goerz L, Mayr HO (2013) Microporous calcium phosphate ceramics as tissue engineering scaffolds for the repair of osteochondral defects: histological results. Acta Biomater 9(7):7490–7505. doi: 10.1016/j.actbio.2013.03.021 CrossRefGoogle Scholar
  35. 35.
    Guo X, Park H, Young S, Kretlow JD, van den Beucken JJ, Baggett LS, Tabata Y, Kasper FK, Mikos AG, Jansen JA (2010) Repair of osteochondral defects with biodegradable hydrogel composites encapsulating marrow mesenchymal stem cells in a rabbit model. Acta Biomater 6(1):39–47. doi: 10.1016/j.actbio.2009.07.041 CrossRefGoogle Scholar
  36. 36.
    Lim CT, Ren X, Afizah MH, Tarigan-Panjaitan S, Yang Z, Wu Y, Chian KS, Mikos AG, Hui JHP (2013) Repair of osteochondral defects with rehydrated freeze-dried oligo poly(ethylene glycol) fumarate hydrogels seeded with bone marrow mesenchymal stem cells in a porcine model. Tissue Eng Part A 19(15–16):1852–1861. doi: 10.1089/ten.tea.2012.0621 CrossRefGoogle Scholar
  37. 37.
    Emans PJ, Jansen EJP, van Iersel D, Welting TJM, Woodfield TBF, Bulstra SK, Riesle J, van Rhijn LW, Kuijer R (2013) Tissue-engineered constructs: the effect of scaffold architecture in osteochondral repair. J Tissue Eng Regen Med 7(9):751–756. doi: 10.1002/term.1477 CrossRefGoogle Scholar
  38. 38.
    Makris EA, Gomoll AH, Malizos KN, Hu JC, Athanasiou KA (2015) Repair and tissue engineering techniques for articular cartilage. Nat Rev Rheumatol 11(1):21–34. doi: 10.1038/nrrheum.2014.157 CrossRefGoogle Scholar
  39. 39.
    Miot S, Brehm W, Dickinson S, Sims T, Wixmerten A, Longinotti C, Hollander AP, Mainil-Varlet P, Martin I (2012) Influence of in vitro maturation of engineered cartilage on the outcome of osteochondral repair in a goat model. Eur Cells Mater 23:222–236Google Scholar
  40. 40.
    Chang NJ, Lin CC, Li CF, Wang DA, Issariyaku N, Yeh ML (2012) The combined effects of continuous passive motion treatment and acellular PLGA implants on osteochondral regeneration in the rabbit. Biomaterials 33(11):3153–3163. doi: 10.1016/j.biomaterials.2011.12.054 CrossRefGoogle Scholar
  41. 41.
    Dormer NH, Singh M, Wang L, Berkland CJ, Detamore MS (2010) Osteochondral interface tissue engineering using macroscopic gradients of bioactive signals. Ann Biomed Eng 38(6):2167–2182. doi: 10.1007/s10439-010-0028-0 CrossRefGoogle Scholar
  42. 42.
    Levingstone TJ, Matsiko A, Dickson GR, O’Brien FJ, Gleeson JP (2014) A biomimetic multi-layered collagen-based scaffold for osteochondral repair. Acta Biomater 10(5):1996–2004. doi: 10.1016/j.actbio.2014.01.005 CrossRefGoogle Scholar
  43. 43.
    Jiang Y, Chen L, Zhang S, Tong T, Zhang W, Liu W, Xu G, Tuan RS, Heng BC, Crawford R, Xiao Y, Ouyang HW (2013) Incorporation of bioactive polyvinylpyrrolidone–iodine within bilayered collagen scaffolds enhances the differentiation and subchondral osteogenesis of mesenchymal stem cells. Acta Biomater 9(9):8089–8098. doi: 10.1016/j.actbio.2013.05.014 CrossRefGoogle Scholar
  44. 44.
    Dorozhkin SV, Epple M (2002) Biological and medical significance of calcium phosphates. Angew Chem Int Ed 41(17):3130–3146. doi: 10.1002/1521-3773(20020902)41:17<3130:aid-anie3130>;2-1 CrossRefGoogle Scholar
  45. 45.
    LeGeros RZ (2008) Calcium phosphate-based osteoinductive materials. Chem Rev 108(11):4742–4753. doi: 10.1021/cr800427g CrossRefGoogle Scholar
  46. 46.
    Zhang Y, Wu C, Friis T, Xiao Y (2010) The osteogenic properties of CaP/silk composite scaffolds. Biomaterials 31(10):2848–2856. doi: 10.1016/j.biomaterials.2009.12.049 CrossRefGoogle Scholar
  47. 47.
    Jiang J, Tang A, Ateshian GA, Guo XE, Hung CT, Lu HH (2010) Bioactive stratified polymer ceramic-hydrogel scaffold for integrative osteochondral repair. Ann Biomed Eng 38(6):2183–2196. doi: 10.1007/s10439-010-0038-y CrossRefGoogle Scholar
  48. 48.
    Zhou J, Xu C, Wu G, Cao X, Zhang L, Zhai Z, Zheng Z, Chen X, Wang Y (2011) In vitro generation of osteochondral differentiation of human marrow mesenchymal stem cells in novel collagen-hydroxyapatite layered scaffolds. Acta Biomater 7(11):3999–4006. doi: 10.1016/j.actbio.2011.06.040 CrossRefGoogle Scholar
  49. 49.
    Seol YJ, Park JY, Jeong W, Kim TH, Kim SY, Cho DW (2015) Development of hybrid scaffolds using ceramic and hydrogel for articular cartilage tissue regeneration. J Biomed Mater Res, Part A 103(4):1404–1413. doi: 10.1002/jbm.a.35276 CrossRefGoogle Scholar
  50. 50.
    Sheehy EJ, Vinardell T, Buckley CT, Kelly DJ (2013) Engineering osteochondral constructs through spatial regulation of endochondral ossification. Acta Biomater 9(3):5484–5492. doi: 10.1016/j.actbio.2012.11.008 CrossRefGoogle Scholar
  51. 51.
    Deng T, Lv J, Pang J, Liu B, Ke J (2014) Construction of tissue-engineered osteochondral composites and repair of large joint defects in rabbit. J Tissue Eng Regen Med 8(7):546–556. doi: 10.1002/term.1556 Google Scholar
  52. 52.
    Galperin A, Oldinski RA, Florczyk SJ, Bryers JD, Zhang M, Ratner BD (2013) Integrated Bi-Layered Scaffold for Osteochondral Tissue Engineering. Advanced Healthcare Materials 2(6):872–883. doi: 10.1002/adhm.201200345 CrossRefGoogle Scholar
  53. 53.
    Rodrigues MT, Lee SJ, Gomes ME, Reis RL, Atala A, Yoo JJ (2012) Bilayered constructs aimed at osteochondral strategies: the influence of medium supplements in the osteogenic and chondrogenic differentiation of amniotic fluid-derived stem cells. Acta Biomater 8(7):2795–2806. doi: 10.1016/j.actbio.2012.04.013 CrossRefGoogle Scholar
  54. 54.
    Bal BS, Rahaman MN, Jayabalan P, Kuroki K, Cockrell MK, Yao JQ, Cook JL (2010) In vivo outcomes of tissue-engineered osteochondral grafts. J Biomed Mater Res B Appl Biomater 93(1):164–174. doi: 10.1002/jbm.b.31571 Google Scholar
  55. 55.
    Liu S, Wu J, Liu X, Chen D, Bowlin GL, Cao L, Lu J, Li F, Mo X, Fan C (2015) Osteochondral regeneration using an oriented nanofiber yarn-collagen type I/hyaluronate hybrid/TCP biphasic scaffold. J Biomed Mater Res, Part A 103(2):581–592. doi: 10.1002/jbm.a.35206
  56. 56.
    Guo X, Liao J, Park H, Saraf A, Raphael RM, Tabata Y, Kasper FK, Mikos AG (2010) Effects of TGF-beta3 and preculture period of osteogenic cells on the chondrogenic differentiation of rabbit marrow mesenchymal stem cells encapsulated in a bilayered hydrogel composite. Acta Biomater 6(8):2920–2931. doi: 10.1016/j.actbio.2010.02.046 CrossRefGoogle Scholar
  57. 57.
    Kim K, Lam J, Lu S, Spicer PP, Lueckgen A, Tabata Y, Wong ME, Jansen JA, Mikos AG, Kasper FK (2013) Osteochondral tissue regeneration using a bilayered composite hydrogel with modulating dual growth factor release kinetics in a rabbit model. J Control Release 168(2):166–178. doi: 10.1016/j.jconrel.2013.03.013 CrossRefGoogle Scholar
  58. 58.
    Castro NJ, O’Brien CM, Zhang LG (2014) Biomimetic biphasic 3-D nanocomposite scaffold for osteochondral regeneration. AIChE J 60(2):432–442. doi: 10.1002/aic.14296 CrossRefGoogle Scholar
  59. 59.
    Chen J, Chen H, Li P, Diao H, Zhu S, Dong L, Wang R, Guo T, Zhao J, Zhang J (2011) Simultaneous regeneration of articular cartilage and subchondral bone in vivo using MSCs induced by a spatially controlled gene delivery system in bilayered integrated scaffolds. Biomaterials 32(21):4793–4805. doi: 10.1016/j.biomaterials.2011.03.041 CrossRefGoogle Scholar
  60. 60.
    Ding X, Zhu M, Xu B, Zhang J, Zhao Y, Ji S, Wang L, Wang L, Li X, Kong D, Ma X, Yang Q (2014) Integrated trilayered silk fibroin scaffold for osteochondral differentiation of adipose-derived stem cells. ACS Appl Mater Interfaces 6(19):16696–16705. doi: 10.1021/am5036708 CrossRefGoogle Scholar
  61. 61.
    Dormer NH, Qiu Y, Lydick AM, Allen ND, Mohan N, Berkland CJ, Detamore MS (2012) Osteogenic differentiation of human bone marrow stromal cells in hydroxyapatite-loaded microsphere-based scaffolds. Tissue Eng Part A 18(7–8):757–767. doi: 10.1089/ten.tea.2011.0176 CrossRefGoogle Scholar
  62. 62.
    Mohan N, Dormer NH, Caldwell KL, Key VH, Berkland CJ, Detamore MS (2011) Continuous gradients of material composition and growth factors for effective regeneration of the osteochondral interface. Tissue Eng Part A 17(21–22):2845–2855. doi: 10.1089/ten.tea.2011.0135 CrossRefGoogle Scholar
  63. 63.
    Jeon O, Alt DS, Linderman SW, Alsberg E (2013) Biochemical and physical signal gradients in hydrogels to control stem cell behavior. Adv Mater 25(44):6366–6372. doi: 10.1002/adma.201302364 CrossRefGoogle Scholar
  64. 64.
    Zscharnack M, Hepp P, Richter R, Aigner T, Schulz R, Somerson J, Josten C, Bader A, Marquass B (2010) Repair of chronic osteochondral defects using predifferentiated mesenchymal stem cells in an ovine model. Am J Sports Med 38(9):1857–1869. doi: 10.1177/0363546510365296 CrossRefGoogle Scholar
  65. 65.
    Hannink G, de Mulder ELW, van Tienen TG, Buma P (2012) Effect of load on the repair of osteochondral defects using a porous polymer scaffold. J Biomed Mater Res Part B Appl Biomater 100B(8):2082–2089. doi: 10.1002/jbm.b.32773 CrossRefGoogle Scholar
  66. 66.
    Chang NJ, Lin CC, Li CF, Su K, Yeh ML (2013) The effect of osteochondral regeneration using polymer constructs and continuous passive motion therapy in the lower weight-bearing zone of femoral trocheal groove in rabbits. Ann Biomed Eng 41(2):385–397. doi: 10.1007/s10439-012-0656-7
  67. 67.
    Chiang H, Liao CJ, Wang YH, Huang HY, Chen CN, Hsieh CH, Huang YY, Jiang CC (2010) Comparison of articular cartilage repair by autologous chondrocytes with and without in vitro cultivation. Tissue Eng Part C Methods 16(2):291–300. doi: 10.1089/ten.tec.2009.0298 CrossRefGoogle Scholar
  68. 68.
    Jin CZ, Cho JH, Choi BH, Wang LM, Kim MS, Park SR, Yoon JH, Oh HJ, Min BH (2011) The maturity of tissue-engineered cartilage in vitro affects the repairability for osteochondral defect. Tissue Eng Part A 17(23–24):3057–3065. doi: 10.1089/ten.TEA.2010.0605 CrossRefGoogle Scholar
  69. 69.
    Mohal JS, Tailor HD, Khan WS (2012) Sources of adult mesenchymal stem cells and their applicability for musculoskeletal applications. Curr Stem Cell Res Ther 7(2):103–109. doi: 10.2174/157488812799219027
  70. 70.
    Chang CH, Kuo TF, Lin FH, Wang JH, Hsu YM, Huang HT, Loo ST, Fang HW, Liu HC, Wang WC (2011) Tissue engineering-based cartilage repair with mesenchymal stem cells in a porcine model. J Orthop Res 29(12):1874–1880. doi: 10.1002/jor.21461 CrossRefGoogle Scholar
  71. 71.
    Yamanaka S (2012) Induced pluripotent stem cells: past, present, and future. Cell stem cell 10(6):678–684. doi: 10.1016/j.stem.2012.05.005
  72. 72.
    Ko JY, Kim KI, Park S, Im GI (2014) In vitro chondrogenesis and in vivo repair of osteochondral defect with human induced pluripotent stem cells. Biomaterials 35(11):3571–3581. doi: 10.1016/j.biomaterials.2014.01.009 CrossRefGoogle Scholar
  73. 73.
    Diekman BO, Christoforou N, Willard VP, Sun H, Sanchez-Adams J, Leong KW, Guilak F (2012) Cartilage tissue engineering using differentiated and purified induced pluripotent stem cells. Proc Natl Acad Sci 109(47):19172–19177. doi: 10.1073/pnas.1210422109
  74. 74.
    Da H, Jia SJ, Meng GL, Cheng JH, Zhou W, Xiong Z, Mu YJ, Liu J (2013) The impact of compact layer in biphasic scaffold on osteochondral tissue engineering. PLoS One 8(1):e54838. doi: 10.1371/journal.pone.0054838

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Tissue Engineering Research Group, Department of AnatomyRoyal College of Surgeons in IrelandDublinIreland
  2. 2.Advanced Materials and Bioengineering Research (AMBER) CentreRCSI&TCDDublinIreland

Personalised recommendations