Using Machine Learning Techniques to Recover Prismatic Cirrus Ice Crystal Size from 2-Dimensional Light Scattering Patterns

  • Daniel PrioriEmail author
  • Giseli de Sousa
  • Mauro Roisenberg
  • Christopher Stopford
  • Evelyn Hesse
  • Emmanuel Salawu
  • Neil Davey
  • Yi Sun
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9887)


In this paper, we present a prediction model developed to identify particles size of ice crystals in clouds. The proposed model combines a Feed Forward Multi-Layer Perceptron neural network with Bayesian regularization backpropagation and other machine learning techniques for feature reduction with Principal Component Analysis and rotation invariance with Fast Fourier Transform. The proposed solution is capable of predicting the particle sizes with normalized mean squared error around 0.007. However, the proposed network model is not able to predict the size of very small particles (between 3 and 10 \({\upmu }\)m size) with the same precision as for the larger particles. Therefore, in this work we also discuss some possible reasons for this problem and suggest future points that need to be analysed.


2d light scattering pattern Atmospheric particle Size prediction Fast Fourier Transform Neural network regression 


  1. 1.
    Climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (2013)Google Scholar
  2. 2.
    Baran, A.J.: A review of the light scattering properties of cirrus. J. Quant. Spectrosc. Radiat. Transfer 110(14–16), 1239–1260 (2009)CrossRefGoogle Scholar
  3. 3.
    Beaudoin, N., Beauchemin, S.: An accurate discrete fourier transform for image processing. Object recognition supported by user interaction for service robots (2002)Google Scholar
  4. 4.
    Bengio, Y.: Learning deep architectures for AI. FNT Mach. Learn. 2(1), 1–127 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    El-Bakry, H.M., Mastorakis, N.: New fast normalized neural networks for pattern detection. Image Vis. Comput. 25(11), 1767–1784 (2007)CrossRefGoogle Scholar
  6. 6.
    Foresee, F.D., Hagan, M.T.: Gauss-newton approximation to bayesian learning. In: International Conference on Neural Networks, vol. 3, pp. 1930–1935 (1997)Google Scholar
  7. 7.
    Griffiths, D.: Introduction to Electrodynamics. Prentice Hall, Upper Saddle River (1999)Google Scholar
  8. 8.
    Gugliotta, L.M., Stegmayer, G.S., Clementi, L.A., Gonzalez, V.D.G., Minari, R.J., Leiza, J.R., Vega, J.R.: A neural network model for estimating the particle size distribution of dilute latex from multiangle dynamic light scattering measurements. Part. Part. Syst. Charact. 26(1–2), 41–52 (2009)CrossRefGoogle Scholar
  9. 9.
    Hesse, E., Call, D.M., Ulanowski, Z., Stopford, C., Kaye, P.: Application of RTDF to particles with curved surfaces. J. Quant. Spectrosc. Radiat. Transfer 110(14–16), 1599–1603 (2009)CrossRefGoogle Scholar
  10. 10.
    Kaye, P., Hirst, E., Wang-Thomas, Z.: Neural-network-based spatial light-scattering instrument for hazardous airborne fiber detection. Appl. Opt. 36(24), 6149 (1997)CrossRefGoogle Scholar
  11. 11.
    Kaye, P.H., Hirst, E., Greenaway, R.S., Ulanowski, Z., Hesse, E., DeMott, P.J., Saunders, C., Connolly, P.: Classifying atmospheric ice crystals by spatial light scattering. Opt. Lett. 33(13), 1545–1547 (2008)CrossRefGoogle Scholar
  12. 12.
    Lawson, R., Korolev, A., Cober, S., Huang, T., Strapp, J., Isaac, G.: Improved measurements of the drop size distribution of a freezing drizzle event. Atmos. Res. 47–48, 181–191 (1998)CrossRefGoogle Scholar
  13. 13.
    MacKay, D.J.: Bayesian interpolation. Neural Comput. 4, 415–447 (1991)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Mie, G.: Beiträge zur optik trüber medien, speziell kolloidaler metallösungen. Annalen der Physik 330(3), 377–445 (1908)CrossRefzbMATHGoogle Scholar
  15. 15.
    Pinto, R.C., Engel, P.M.: A fast incremental gaussian mixture model. PLOS ONE 10(10), e0139931 (2015)CrossRefGoogle Scholar
  16. 16.
    Riefler, N., Wriedt, T.: Intercomparison of inversion algorithms for particle-sizing using mie scattering. Part. Part. Syst. Charact. 25(3), 216–230 (2008)CrossRefGoogle Scholar
  17. 17.
    Sharma, A., Kumar, R., Varadwaj, P.K., Ahmad, A., Ashraf, G.M.: A comparative study of support vector machine, artificial neural network and bayesian classifier for mutagenicity prediction. Interdisc. Sci. Comput. Life Sci. 3(3), 232–239 (2011)CrossRefGoogle Scholar
  18. 18.
    Song, F., Guo, Z., Mei, D.: Feature selection using principal component analysis. In: 2010 International Conference on System Science, Engineering Design and Manufacturing Informatization (2010)Google Scholar
  19. 19.
    Stopford, C.: Ice crystal classification using two dimensional light scattering patterns. Ph.D. thesis, University of Hertfordshire, Hatfield, UK (2010)Google Scholar
  20. 20.
    Ulanowski, Z., Wang, Z., Kaye, P.H., Ludlow, I.K.: Application of neural networks to the inverse light scattering problem for spheres. Appl. Opt. 37(18), 4027–4033 (1998)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Daniel Priori
    • 1
    Email author
  • Giseli de Sousa
    • 1
    • 2
  • Mauro Roisenberg
    • 1
  • Christopher Stopford
    • 2
  • Evelyn Hesse
    • 2
  • Emmanuel Salawu
    • 3
  • Neil Davey
    • 2
  • Yi Sun
    • 2
  1. 1.Connectionism and Cognitive Science Lab, Deparment of Informatic and StatisticFederal University of Santa CatarinaFlorianopolisBrazil
  2. 2.Science and Technology Research InstituteUniversity of HertfordshireHatfieldUK
  3. 3.TIGP Bioinformatics Program, Academia SinicaTaipeiTaiwan

Personalised recommendations