Skip to main content

Using Machine Learning Techniques to Recover Prismatic Cirrus Ice Crystal Size from 2-Dimensional Light Scattering Patterns

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2016 (ICANN 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9887))

Included in the following conference series:

  • 3813 Accesses

Abstract

In this paper, we present a prediction model developed to identify particles size of ice crystals in clouds. The proposed model combines a Feed Forward Multi-Layer Perceptron neural network with Bayesian regularization backpropagation and other machine learning techniques for feature reduction with Principal Component Analysis and rotation invariance with Fast Fourier Transform. The proposed solution is capable of predicting the particle sizes with normalized mean squared error around 0.007. However, the proposed network model is not able to predict the size of very small particles (between 3 and 10 \({\upmu }\)m size) with the same precision as for the larger particles. Therefore, in this work we also discuss some possible reasons for this problem and suggest future points that need to be analysed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (2013)

    Google Scholar 

  2. Baran, A.J.: A review of the light scattering properties of cirrus. J. Quant. Spectrosc. Radiat. Transfer 110(14–16), 1239–1260 (2009)

    Article  Google Scholar 

  3. Beaudoin, N., Beauchemin, S.: An accurate discrete fourier transform for image processing. Object recognition supported by user interaction for service robots (2002)

    Google Scholar 

  4. Bengio, Y.: Learning deep architectures for AI. FNT Mach. Learn. 2(1), 1–127 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. El-Bakry, H.M., Mastorakis, N.: New fast normalized neural networks for pattern detection. Image Vis. Comput. 25(11), 1767–1784 (2007)

    Article  Google Scholar 

  6. Foresee, F.D., Hagan, M.T.: Gauss-newton approximation to bayesian learning. In: International Conference on Neural Networks, vol. 3, pp. 1930–1935 (1997)

    Google Scholar 

  7. Griffiths, D.: Introduction to Electrodynamics. Prentice Hall, Upper Saddle River (1999)

    Google Scholar 

  8. Gugliotta, L.M., Stegmayer, G.S., Clementi, L.A., Gonzalez, V.D.G., Minari, R.J., Leiza, J.R., Vega, J.R.: A neural network model for estimating the particle size distribution of dilute latex from multiangle dynamic light scattering measurements. Part. Part. Syst. Charact. 26(1–2), 41–52 (2009)

    Article  Google Scholar 

  9. Hesse, E., Call, D.M., Ulanowski, Z., Stopford, C., Kaye, P.: Application of RTDF to particles with curved surfaces. J. Quant. Spectrosc. Radiat. Transfer 110(14–16), 1599–1603 (2009)

    Article  Google Scholar 

  10. Kaye, P., Hirst, E., Wang-Thomas, Z.: Neural-network-based spatial light-scattering instrument for hazardous airborne fiber detection. Appl. Opt. 36(24), 6149 (1997)

    Article  Google Scholar 

  11. Kaye, P.H., Hirst, E., Greenaway, R.S., Ulanowski, Z., Hesse, E., DeMott, P.J., Saunders, C., Connolly, P.: Classifying atmospheric ice crystals by spatial light scattering. Opt. Lett. 33(13), 1545–1547 (2008)

    Article  Google Scholar 

  12. Lawson, R., Korolev, A., Cober, S., Huang, T., Strapp, J., Isaac, G.: Improved measurements of the drop size distribution of a freezing drizzle event. Atmos. Res. 47–48, 181–191 (1998)

    Article  Google Scholar 

  13. MacKay, D.J.: Bayesian interpolation. Neural Comput. 4, 415–447 (1991)

    Article  MathSciNet  Google Scholar 

  14. Mie, G.: Beiträge zur optik trüber medien, speziell kolloidaler metallösungen. Annalen der Physik 330(3), 377–445 (1908)

    Article  MATH  Google Scholar 

  15. Pinto, R.C., Engel, P.M.: A fast incremental gaussian mixture model. PLOS ONE 10(10), e0139931 (2015)

    Article  Google Scholar 

  16. Riefler, N., Wriedt, T.: Intercomparison of inversion algorithms for particle-sizing using mie scattering. Part. Part. Syst. Charact. 25(3), 216–230 (2008)

    Article  Google Scholar 

  17. Sharma, A., Kumar, R., Varadwaj, P.K., Ahmad, A., Ashraf, G.M.: A comparative study of support vector machine, artificial neural network and bayesian classifier for mutagenicity prediction. Interdisc. Sci. Comput. Life Sci. 3(3), 232–239 (2011)

    Article  Google Scholar 

  18. Song, F., Guo, Z., Mei, D.: Feature selection using principal component analysis. In: 2010 International Conference on System Science, Engineering Design and Manufacturing Informatization (2010)

    Google Scholar 

  19. Stopford, C.: Ice crystal classification using two dimensional light scattering patterns. Ph.D. thesis, University of Hertfordshire, Hatfield, UK (2010)

    Google Scholar 

  20. Ulanowski, Z., Wang, Z., Kaye, P.H., Ludlow, I.K.: Application of neural networks to the inverse light scattering problem for spheres. Appl. Opt. 37(18), 4027–4033 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Priori .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Priori, D. et al. (2016). Using Machine Learning Techniques to Recover Prismatic Cirrus Ice Crystal Size from 2-Dimensional Light Scattering Patterns. In: Villa, A., Masulli, P., Pons Rivero, A. (eds) Artificial Neural Networks and Machine Learning – ICANN 2016. ICANN 2016. Lecture Notes in Computer Science(), vol 9887. Springer, Cham. https://doi.org/10.1007/978-3-319-44781-0_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44781-0_44

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44780-3

  • Online ISBN: 978-3-319-44781-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics