Skip to main content

Learning to Enumerate

  • 2495 Accesses

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 9886)


The Learning to Enumerate problem is a new variant of the typical active learning problem. Our objective is to find data that satisfies arbitrary but fixed conditions, without using any prelabeled training data. The key aspect here is to query as few as possible non-target data. While typical active learning techniques try to keep the number of queried labels low they give no regards to the class these instances belong to. Since the aim of this problem is different from the common active learning problem, we started with applying uncertainty sampling as a base technique and evaluated the performance of three different base learner on 19 public datasets from the UCI Machine Learning Repository.


  • Active learning
  • Learning to enumerate
  • Exploration vs. exploitation
  • Epsilon-greedy

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-44778-0_53
  • Chapter length: 8 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
USD   79.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-44778-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   99.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.


  1. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  2. Settles, B.: Active Learning. Synth. Lect. Artif. Intell. Mach. Learn. 6, 1–114 (2012). Morgan & Claypool Publishers

    MathSciNet  CrossRef  MATH  Google Scholar 

  3. Baba, Y., Kashima, H., Nohara, Y., Kai, E., Ghosh, P., Islam, R., Ahmed, A., Kuruda, M., Inoue, S., Hiramatsu, T., Kimura, M., Shimizu, S., Kobayashi, K., Tsuda, K., Sugiyama, M., Blondel, M., Ueda, N., Kitsuregawa, M., Nakashima, N.: Predictive approaches for low-cost preventive medicine program in developing countries. In: Proceedings of the 21st ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1681–1690. ACM (2015)

    Google Scholar 

  4. Kajino, H., Kishimoto, A., Botea, A., Daly, E., Kotoulas, S.: Active learning for multi-relational data construction. In: Proceedings of the 24th International Conference on World Wide Web, pp. 560–569. ACM (2015)

    Google Scholar 

  5. Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-time analysis of the multiarmed bandit problem. Mach. Learn. 47(2–3), 235–256 (2002). Springer

    CrossRef  MATH  Google Scholar 

  6. Scikit-Learn User Guide.

  7. UC Irvine Machine Learning Repository.

Download references


This research was supported by the Landesstiftung Baden-Württemberg (Baden-Württemberg-STIPENDIUM) and by MEXT Grant-in-Aid for Scientific Research on Innovative Areas.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Patrick Jörger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Jörger, P., Baba, Y., Kashima, H. (2016). Learning to Enumerate. In: Villa, A., Masulli, P., Pons Rivero, A. (eds) Artificial Neural Networks and Machine Learning – ICANN 2016. ICANN 2016. Lecture Notes in Computer Science(), vol 9886. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44777-3

  • Online ISBN: 978-3-319-44778-0

  • eBook Packages: Computer ScienceComputer Science (R0)