Skip to main content

Plasticity in the Granular Layer Enhances Motor Learning in a Computational Model of the Cerebellum

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2016 (ICANN 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9886))

Included in the following conference series:

  • 2634 Accesses

Abstract

Learning mechanisms inspired by the animal cerebellum have shown promising achievements in artificial motor adaptation, mainly by focusing on the computation performed in the molecular layer. Other sites of cerebellar plasticity however are less explored whereas their understanding could contribute to improved computational solutions. In this study, we address the advantages of a form of plasticity found in the glomerulus, thought to control the temporal gating dynamics of the cerebellar pontine input. We explore this hypothesis from a system-level perspective within a simulated robotic rejection task, by implementing a model of the cerebellar microcircuit where adaptation of the input transformation dynamics, accounting for glomerular information processing, is controlled by a cost function. Our results suggest that glomerular adaptation (1) improves motor learning by adjusting input signal transformation properties towards an optimal configuration and shaping time and magnitude of the cerebellar output, and (2) contributes to fast readaptation during sudden plant perturbations. Finally, we discuss the implications of our results from a neuroscientific and articifical control perspective.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Albus, J.S.: A theory of cerebellar function. Math. Biosci. 10(1–2), 25–61 (1971)

    Article  Google Scholar 

  2. Crowley, J.J., Fioravante, D., Regehr, W.G.: Dynamics of fast and slow inhibition from cerebellar golgi cells allow flexible control of synaptic integration. Neuron 63(6), 843–853 (2009)

    Article  Google Scholar 

  3. De Schutter, E., Bjaalie, J.G.: Coding in the granular layer of the cerebellum. Prog. Brain Res. 130, 279–296 (2001)

    Article  Google Scholar 

  4. Dean, P., Porrill, J., Ekerot, C.F., Jörntell, H.: The cerebellar microcircuit as an adaptive filter: experimental and computational evidence. Nat. Rev. Neurosci. 11(1), 30–43 (2010)

    Article  Google Scholar 

  5. Garrido, J.A., Luque, N.R., D’Angelo, E., Ros, E.: Distributed cerebellar plasticity implements adaptable gain control in a manipulation task: a closed-loop robotic simulation. Front. Neural Circ. 7, 159 (2013)

    Google Scholar 

  6. Herreros, I., Maffei, G., Brandi, S., Sanchez-Fibla, M., Verschure, P.: Speed generalization capabilities of a cerebellar model on a rapid navigation task. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 363–368. IEEE (2013)

    Google Scholar 

  7. Herreros, I., Verschure, P.F.: Nucleo-olivary inhibition balances the interaction between the reactive and adaptive layers in motor control. Neural Netw. 47, 64–71 (2013)

    Article  Google Scholar 

  8. Maffei, G., Sanchez-fibla, M., Herreros, I., Paul, F.M.J.: Acquisition of synergistic motor responses through cerebellar learning in a robotic postural task. In: Biomimetic and Biohybrid Systems (2014)

    Google Scholar 

  9. Maffei, G., Santos-Pata, D., Marcos, E., Sánchez-Fibla, M., Verschure, P.: An embodied biologically constrained model of foraging: from classical and operant conditioning to adaptive real-world behavior in DAC-X. Neural Netw. 72, 88–108 (2015)

    Article  Google Scholar 

  10. Nieus, T.: LTP regulates burst initiation and frequency at mossy fiber-granule cell synapses of rat cerebellum: experimental observations and theoretical predictions. J. Neurophysiol. 95(2), 686–699 (2005)

    Article  Google Scholar 

  11. Nori, F., Traversaro, S., Eljaik, J., Romano, F., Del Prete, A., Pucci, D.: iCub whole-body control through force regulation on rigid non-coplanar contacts. Front. Robot. AI 2, 6 (2015)

    Article  Google Scholar 

  12. Schweighofer, N., Doya, K., Lay, F.: Unsupervised learning of granule cell sparse codes enhances cerebellar adaptive control. Neuroscience 103(1), 35–50 (2001)

    Article  Google Scholar 

  13. Shadmehr, R., Smith, M.A., Krakauer, J.W.: Error correction, sensory prediction, and adaptation in motor control. Ann. Rev. Neurosci. 33, 89–108 (2010)

    Article  Google Scholar 

  14. Timmann, D., Horak, F.B.: Perturbed step initiation in cerebellar subjects: 2. Modification of anticipatory postural adjustments. Exp. Brain Res. 141(1), 110–120 (2010)

    Article  Google Scholar 

  15. Wilson, E.D., Assaf, T., Pearson, M.J., Rossiter, J.M., Anderson, S.R., Porrill, J.: Bioinspired adaptive control for artificial muscles. In: Lepora, N.F., Mura, A., Krapp, H.G., Verschure, P.F.M.J., Prescott, T.J. (eds.) Living Machines 2013. LNCS, vol. 8064, pp. 311–322. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  16. Xu, W., Edgley, S.A.: Climbing fibre-dependent changes in golgi cell responses to peripheral stimulation. J. Physiol. 586(20), 4951–4959 (2008)

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by the European Commission’s Horizon 2020 socSMC under agreement number: socSMC-641321H2020-FETPROACT-2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Maffei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Maffei, G., Herreros, I., Sanchez-Fibla, M., Verschure, P.F.M.J. (2016). Plasticity in the Granular Layer Enhances Motor Learning in a Computational Model of the Cerebellum. In: Villa, A., Masulli, P., Pons Rivero, A. (eds) Artificial Neural Networks and Machine Learning – ICANN 2016. ICANN 2016. Lecture Notes in Computer Science(), vol 9886. Springer, Cham. https://doi.org/10.1007/978-3-319-44778-0_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44778-0_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44777-3

  • Online ISBN: 978-3-319-44778-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics