InterCriteria Analysis of Ant Algorithm with Environment Change for GPS Surveying Problem

  • Stefka Fidanova
  • Olympia Roeva
  • Antonio Mucherino
  • Kristina Kapanova
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9883)

Abstract

In this paper we apply InterCriteria Analysis (ICrA), which is based on the apparatus of Index Matrices and Intuitionistic Fuzzy Sets. We apply ICrA on the well-known Ant Colony Optimization (ACO) general framework including environment change. The environment is simulated by means of the Logistic map, that is used in ACO for perturbing the update of the pheromone trails. We compare different levels of perturbation of the one of the most important parameters in ACO – the pheromone. Based on ICrA we examine the obtained identification results and discuss the conclusions about existing relations and dependencies between defined criteria, defined, in terms of ICrA.

Keywords

InterCriteria Analysis Ant Colony Optimization GPS surveying 

Notes

Acknowledgments

This work was partially supported by two grants of the Bulgarian National Scientific Fund: DFNI-I02/5 “InterCriteria Analysis – A New Approach to Decision Making”, and by the grant DFNP-176-A1.

References

  1. 1.
    Atanassov, K., Mavrov, D., Atanassova, V.: Intercriteria decision making: a new approach for multicriteria decision making, based on index matrices and intuitionistic fuzzy sets. Issues IFSs GNs 11, 1–8 (2014)Google Scholar
  2. 2.
    Atanassov, K., Szmidt, E., Kacprzyk, J.: On intuitionistic fuzzy pairs. Notes IFS 19(3), 1–13 (2013)MATHGoogle Scholar
  3. 3.
    Atanassov, K.: On index matrices, part 1: standard cases. Adv. Stud. Contemp. Math. 20(2), 291–302 (2010)MathSciNetMATHGoogle Scholar
  4. 4.
    Atanassov, K.: On Intuitionistic Fuzzy Sets Theory. Springer, Berlin (2012)CrossRefMATHGoogle Scholar
  5. 5.
    Atanassova, V., Mavrov, D., Doukovska, L., Atanassov, K.: Discussion on the threshold values in the intercriteria decision making approach. Notes Intuitionistic Fuzzy Sets 20(2), 94–99 (2014)Google Scholar
  6. 6.
    Atanassova, V., Fidanova, S., Popchev, I., Chountas, P.: Generalized nets, ACO-algorithms and genetic algorithm. In: Sabelfeld, K.K., Dimov, I. (eds.) Monte Carlo Methods and Applications, pp. 39–46. De Gruyter, Boston (2012)Google Scholar
  7. 7.
    Dare, P., Saleh, H.A.: GPS network design: logistics solution using optimal and near-optimal methods. J. Geodesy 74, 467–478 (2000)CrossRefMATHGoogle Scholar
  8. 8.
    Dorigo, M., Birattari, M.: Ant colony optimization. In: Sammut, C., Webb, G.I. (eds.) Encyclopedia of Machine Learning, pp. 36–39. Springer, Heidelberg (2010)Google Scholar
  9. 9.
    Hofmann-Wellenhof, B., Lichtenegger, H., Collins, J.: Global Positioning System: Theory and Practice. Springer, Vienna (1993). 326 pGoogle Scholar
  10. 10.
    Leick, A.: GPS Satellite Surveying, 3rd edn. Wiley, Hoboken (2004). 464 pGoogle Scholar
  11. 11.
    Liberti, L., Lavor, C., Maculan, N., Mucherino, A.: Euclidean distance geometry and applications. SIAM Rev. 56(1), 3–69 (2014)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Mucherino, A., Fidanova, S., Ganzha, M.: Ant colony optimization with environment changes: an application to GPS surveying. In: FedCSIS 2015, pp. 495–500 (2015). doi: 10.15439/2015F33
  13. 13.
    Roeva, O., Vassilev, P., Angelova, M., Pencheva, T.: Intercriteria analysis of parameters relations in fermentation processes models. In: Núñez, M., Nguyen, N.T., Camacho, D., Trawiński, B. (eds.) ICCCI 2015. Lecture Notes in Computer Science, vol. 9330, pp. 171–181. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  14. 14.
    Roeva, O., Vassilev, P.: Intercriteria analysis of generation gap influence on genetic algorithms performance. Adv. Intell. Syst. Comput. 401, 301–313 (2016)Google Scholar
  15. 15.
    Saleh, H.A., Dare, P.: Effective heuristics for the GPS survey network of Malta: simulated annealing and tabu search techniques. J. Heuristics 7, 533–549 (2001)CrossRefMATHGoogle Scholar
  16. 16.
    Sotirov, S., Sotirova, E., Melin, P., Castilo, O., Atanassov, K.: Modular neural network preprocessing procedure with intuitionistic fuzzy intercriteria analysis method. Adv. Intell. Syst. Comput. 400, 175–186 (2016)Google Scholar
  17. 17.
    Talbi, E.-G.: Metaheuristics: From Design to Implementation. Wiley, Hoboken (2009). 624 pCrossRefMATHGoogle Scholar
  18. 18.
    Teunissen, P., Kleusberg, A.: GPS for Geodesy, 2nd edn. Springer, Heidelberg (1998). 650 pCrossRefGoogle Scholar
  19. 19.
    Verhulst, P.-F.: A note on the law of population growth. Correspondence Mathematiques et Physiques 10, 113–121 (1938). (in French)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Stefka Fidanova
    • 1
  • Olympia Roeva
    • 2
  • Antonio Mucherino
    • 3
  • Kristina Kapanova
    • 1
  1. 1.IICT, Bulgarian Academy of SciencesSofiaBulgaria
  2. 2.IBFBMI, Bulgarian Academy of SciencesSofiaBulgaria
  3. 3.IRISA, University of Rennes 1RennesFrance

Personalised recommendations