Skip to main content

Evolving Connection Weights of Artificial Neural Network Using a Multi-Objective Approach with Application to Class Prediction

  • Chapter
  • First Online:
Designing with Computational Intelligence

Part of the book series: Studies in Computational Intelligence ((SCI,volume 664))

Abstract

In Artificial Neural Network (ANN), the selection of connection weights is a key issue and Genetic and Evolution Strategies have been found to be promising algorithms to solve this important task. Motivated by that, this study investigates the applicability of using two novel Multi-Objective Evolutionary Algorithms (MOEA): Speed constrained Multi-Objective Particle Swarm Optimization (SMPSO) and Multi-Objective Differential Evolution Algorithm based on Decomposition with Dynamical Resource Allocation (MOEA/D-DE-DRA). ANNs are training to learn data classification using sensibility and specificity for different UCI databases. The results are compared using the Hypervolume as quality indicator and statistical test.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baronti F, Starita A (2007) Hypothesis testing with classifier systems for rule-based risk prediction (chap), pp 24–34). doi:10.1007/978-3-540-71783-6_3

  2. Deb K, Agrawal S, Pratap A, Meyarivan T (2000) A fast elitist non-dominated sorting genetic algorithm for multi-objective optimisation: NSGA-II. In: Proceedings of the 6th international conference on parallel problem solving from nature, PPSN VISpringer, London, UK, pp 849–858

    Google Scholar 

  3. Gaspar-Cunha A, Vieira A (2005) A multi-objective evolutionary algorithm using neural networks to approximate fitness evaluations. Int J Comput Syst Signal 6(1):18–36

    Google Scholar 

  4. Han J, Kamber M (2006) Data mining: concepts and techniques. Morgam Kaufmann Publishers, Amsterdam

    MATH  Google Scholar 

  5. Haykin S (2001) Redes neurais. Bookman

    Google Scholar 

  6. Hodges JL, Lehmann E (2012) Rank methods for combination of independent experiments in analysis of variance. In: Rojo J (ed) Selected works of E.L. Lehmann, selected works in probability and statistics. Springer, US, pp. 403–418. doi:10.1007/978-1-4614-1412-4_35

  7. Ilonen J, Kamarainen JK, Lampinen J (2003) Differential evolution training algorithm for feed-forward neural networks. Neural Process Lett 17(1):93–105. doi:10.1023/A:1022995128597

  8. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of ieee international conference on neural networks, 1995, vol 4, pp 1942–1948. doi:10.1109/ICNN.1995.488968

  9. Kennedy J, Eberhart RC (2001) Swarm intelligence. Morgan Kaufmann Publishers Inc., San Francisco

    Google Scholar 

  10. Kruskal WH (1952) A nonparametric test for the several sample problem. Ann Math Statist 23(4):525–540. doi:10.1214/aoms/1177729332

  11. Nebro AJ, Durillo JJ, Garcia-Nieto J, Coello CAC, Luna F, Alba E (2009) SMPSO: A new PSO-based metaheuristic for multi-objective optimization. In: Computational intelligence in multi-criteria decision-making, IEEE, pp. 66–73

    Google Scholar 

  12. Provost FJ, Fawcett T (1997) Analysis and visualization of classifier performance: comparison under imprecise class and cost distributions. In: KDD, pp 43–48

    Google Scholar 

  13. Provost F, Fawcett T, Kohavi R (1998) The case against accuracy estimation for comparing induction algorithms. In: proceedings 15th international conference on machine learning, Morgan Kaufmann, San Francisco, CA, pp 445–453

    Google Scholar 

  14. Reyes-Sierra M, Coello CAC (2006) Multi-objective particle swarm optimizers: a survey of‘the state-of-the-art. Int J Comput Intell Res 2(3):287–308

    MathSciNet  Google Scholar 

  15. Rumelhart DE, Hinton GE, Williams RJ (1986) Learning internal representations by error propagation. Parallel distributed processing: explorations in the microstructure of cognition, vol 1. MIT Press, Cambridge, pp 318–362. http://dl.acm.org/citation.cfm?id=104279.104293

  16. Slowik A (2011) Application of an adaptive differential evolution algorithm with multiple trial vectors to artificial neural network training. IEEE Trans Ind Electron 58(8):3160–3167. doi:10.1109/TIE.2010.2062474

    Article  Google Scholar 

  17. van Ooyen A, Nienhuis B (1992) Improving the convergence of the back-propagation algorithm. Neural Netw 5(3):465–471. doi:10.1016/0893-6080(92)90008-7

  18. Yao X (1999) Evolving artificial neural networks. Proc IEEE 87(9):1423–1447. doi:10.1109/5.784219

    Article  Google Scholar 

  19. Zhang Q, Li H (2007) MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans Evol Comput 11(6):712–731

    Article  Google Scholar 

  20. Zhang Q, Liu W, Li H (2009) The performance of a new version of MOEA/D on CEC09 unconstrained MOP test instances. IEEE Congr Evol Comput 1:203–208

    MathSciNet  Google Scholar 

  21. Zitzler E, Thiele L, Laumanns M, Fonseca C, da Fonseca V (2003) Performance assessment of multiobjective optimizers: an analysis and review. IEEE Trans Evol Comput 7(2):117–132. doi:10.1109/TEVC.2003.810758

    Article  Google Scholar 

Download references

Acknowledgments

Authors would like to thank CNPq and CAPES for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrei Strickler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Strickler, A., Pozo, A. (2017). Evolving Connection Weights of Artificial Neural Network Using a Multi-Objective Approach with Application to Class Prediction. In: Nedjah, N., Lopes, H., Mourelle, L. (eds) Designing with Computational Intelligence. Studies in Computational Intelligence, vol 664. Springer, Cham. https://doi.org/10.1007/978-3-319-44735-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44735-3_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44734-6

  • Online ISBN: 978-3-319-44735-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics