Advertisement

Wind Energy Scenarios for the Simulation of the German Power System Until 2050: The Effect of Social and Ecological Factors

  • Marion ChristEmail author
  • Martin Soethe
  • Melanie Degel
  • Clemens Wingenbach
Conference paper
Part of the Progress in IS book series (PROIS)

Abstract

Models of future energy systems and the development of underlying energy scenarios contribute to an answer on the question how a transformation of the energy system can be implemented. Although energy system modelling has a wide influence, the field lacks the consideration of local ecological and societal concerns, such as acceptance issues. In this paper, a methodology is developed to integrate social and ecological aspects concerning wind energy into the distribution of future wind energy capacities in Germany. Based on the calculated potential siting area (white area), an algorithm was developed to site different types of wind energy plants in the available area. Two wind expansion scenarios have been developed: one distributing future wind capacities according to technical and economic conditions (economic scenario), and the other based on the regional burden level resulting from wind energy plants (balanced scenario). The development of the burden level as a socio-ecological factor enabled the siting of wind turbines according to an equal burden level in all German districts (Landkreise). It was shown, that this equal distribution led to a shift of capacities from the north-west to the south-east compared to the economic approach.

Keywords

Scenario development Wind energy Open source Socio-ecological factors Energy system modelling 

References

  1. 50Hertz Transmission GmbH, Amprion GmbH, TenneT TSO GmbH, TransnetBW GmbH (2014) Regionalisierungsmethodik Erneuerbarer Energien für das Szenario B 2024 im Netzentwicklungsplan Strom 2014, 2. Entwurf. Grundlage für das Szenario B 2024. http://www.netzentwicklungsplan.de/sites/default/files/media/documents/Erl%C3%A4uterung_Regionalisierung_NEP_2014.pdf. Cited 23. Feb 2015
  2. Alonso, O., Galbete, S., & Sotés, M. (2011). Sizing and management of energy storage for a 100% renewable supply in large electric systems. In R. Carbone (Ed.) Energy Storage in the emerging era of smart grids, chap. 15 (pp. 321–348). Croatia: InTech.Google Scholar
  3. Berkhout, F., Hertin, J., & Jordan, A. (2002). Socio-economic futures in climate change impact assessment: using scenarios as learning machines. Global Environmental Change, 12(2), 83–95. doi: 10.1016/S0959-3780(02)00006-7.CrossRefGoogle Scholar
  4. Bökenkamp, G. (2014). The role of norwegian hydro storage in future renewable electricity supply systems in germany: Analysis with a simulation model. Ph.D. thesis, Europa-Universität Flensburg. http://www.zhb-flensburg.de/dissert/boekenkamp/Gesine_B%C3%B6kenkamp_Dissertation/dissertation%20boekenkamp.pdf. Cited 15. Mar 2016
  5. Börjeson, L., Höjer, M., Dreborg, K. H., Ekvall, T., & Finnveden, G. (2006). Scenario types and techniques: Towards a user’s guide. Futures, 38(7), 723–739. doi: 10.1016/j.futures.2005.12.002.CrossRefGoogle Scholar
  6. Bundesamt für Kartographie und Geodäsie (2014). Digitales Landschaftsmodell 1 : 250 000 (AAA—Modellierung) DLM 250 (AAA). http://www.geodatenzentrum.de/docpdf/dlm250.pdf. Cited 15. Feb 2016
  7. Bundesamt für Naturschutz (2015). WFS Layer der Schutzgebiete von Deutschland. http://geodienste.bfn.de/wfs/schutzgebiete. Cited 15. Feb 2016
  8. Bunke, W.D., Christ, M., & Degel, M. (2015). VerNetzen: Sozial-ökologische und technisch-ökonomische Modellierung von Entwicklungspfaden der Energiewende. Tagungsband: Bundesnetzagentur Wissenschaftsdialog 2014. Technologie, Landschaft und Kommunikation, Wirtschaft pp. 107–125. http://www.netzausbau.de/SharedDocs/Downloads/DE/Publikationen/Tagungsband_14.pdf?__blob=publicationFile. Cited 09. Mar 2016
  9. Caporale, D., & Lucia, C. D. (2015). Social acceptance of on-shore wind energy in apulia region (southern italy). Renewable and Sustainable Energy Reviews, 52, 1378–1390. doi: 10.1016/j.rser.2015.07.183.CrossRefGoogle Scholar
  10. Christ, M., Soethe, M. & Degel, M. (2016) Windausbauszenarien unter Berücksichtigung gesellschaftlicher und ökologischer Rahmenbedingungen für die Simulation des deutschen Energiesystems bis 2050. Tagungsband: EnInnov2016. 14. Symposium Energieinnovation. Energie für unser Europa (110–111). http://www.tugraz.at/fileadmin/user_upload/Events/Eninnov2016/files/lf/Session_B2/LF_Christ_WIND.pdf. Cited 09 Mar 2016
  11. Connolly, D., Lund, H., Mathiesen, B., & Leahy, M. (2010). A review of computer tools for analysing the integration of renewable energy into various energy systems. Applied Energy, 87, 1059–1082. doi: 10.1016/j.apenergy.2009.09.026.CrossRefGoogle Scholar
  12. Degel, M. & Christ, M. (2015). VerNetzen: Sozial-ökologische und techisch-ökonomische Modellirung von Entwicklungspfaden der Energiewende. Tagungsband: FONA Statuskonferenz des BMBF zur Fördermaßnahme Umwelt- und gesellschaftsverträgliche Transformation des Energiesystems (197–202). https://www.fona.de/mediathek/pdf/Tagungsband_Statuskonferenz_Transformation_des_Energiesystems_2015.pdf. Cited 22. Mar 2016
  13. Degel, M., Christ, M., Bunke, W.D., Mester, K., Soethe, M., Grünert, J. & Becker, L. (2016). Projektabschlussbericht—VerNetzen: Sozial-ökologische und technisch-ökonomische Modellierung von Entwicklungspfaden der Energiewende. In preparation.Google Scholar
  14. Deutsche Gesellschaft für Sonnenenergie e.V. (2014). EEG Anlagenregister Nov. 2014. http://www.energymap.info/download/eeg_anlagenregister_2014.11.utf8.csv.zip. Cited 15. Jan 2015
  15. Dieckhoff, C.e.a. (2014). Zur Interpretation von Energieszenarien (Schriftenreihe Energiesysteme der Zukunft). acatech—Deutsche Akademie der Technikwissenschaften e. V. http://www.leopoldina.org/uploads/tx_leopublication/2014_ESYS_Energieszenarien.pdf. Cited 02. Feb 2014
  16. Enevoldsen, P., & Sovacool, B. K. (2016). Examining the social acceptance of wind energy: Practical guidelines for onshore wind project development in france. Renewable and Sustainable Energy Reviews, 53, 178–184. doi: 10.1016/j.rser.2015.08.041.CrossRefGoogle Scholar
  17. ENTSO-E (2014). Production, consumption, exchange package. https://www.entsoe.eu/db-query/country-packages/production-consumption-exchange-package. Cited 15. Mar 2016
  18. European Environment Agency (2014a). Corine Land Cover 2006 seamless vector data V-3. http://www.eea.europa.eu/data-and-maps/data/natura-5#tab-gis-data. Cited 24. Feb 2015
  19. European Environment Agency (2014b). Natura 2000 data—the European network of protected sites. http://www.eea.europa.eu/data-and-maps/data/natura-5#tab-gis-data, abgerufen am 10. November 2014. Cited 24. Feb 2015
  20. Fortes, P., Alvarenga, A., Seixas, J. & Rodrigues, S. (2014). Long-term energy scenarios: Bridging the gap between socio-economic storylines and energy modeling. Technological Forecasting & Social Change 91. doi: 10.1016/j.techfore.2014.02.006
  21. Geyer, B. (2014). High-resolution atmospheric reconstruction for europe. 1948–2012. Earth System Science Data 6, 147–164. doi: 10.5194/essd-6-147-2014
  22. Hammami, S.M., Chtourou, S. & Triki, A. (2016). Identifying the determinants of community acceptance of renewable energy technologies: The case study of a wind energy project from tunisia. Renewable and Sustainable Energy Reviews 54, 151–160. http://dx.doi.org/10.1016/j.rser.2015.09.037
  23. Huesca-Pérez, M. E., Sheinbaum-Pardo, C., & Köppel, J. (2016). Social implications of siting wind energy in a disadvantaged region—the case of the isthmus of tehuantepec, mexico. Renewable and Sustainable Energy Reviews, 58, 952–965. doi: 10.1016/j.rser.2015.12.310.CrossRefGoogle Scholar
  24. Jobert, A., Laborgne, P., & Mimler, S. (2007). Local acceptance of wind energy: Factors of success identified in french and german case studies. Energy Policy, 35, 2751–2760. doi: 10.1016/j.enpol.2006.12.005.CrossRefGoogle Scholar
  25. Lund, H., & Mathiesen, B. (2009). Energy system analysis of 100systems—the case of denmark in years 2030 and 2050. Energy, 34, 524–531. doi: 10.1016/j.energy.2008.04.003.CrossRefGoogle Scholar
  26. Lütkehus, I., Salecker, H. & Adlunger, K. (2013). Potenzial der Windenergie an Land. https://www.umweltbundesamt.de/sites/default/files/medien/378/publikationen/potenzial_der_windenergie.pdf. Cited 10. Jan 2016
  27. Mai, T., Logan, J., Blair, N., Sullivan, P. & Bazilian, M. (2013) Re-assume—a decision maker’s guide to evaluating energy scenarios, modeling, and assumptions. http://iea-retd.org/wp-content/uploads/2013/07/RE-ASSUME_IEA-RETD_2013.pdf. Cited 06. May 2014
  28. Nitsch, J., et. al. (2012). Langfristszenarien und Strategien für den Ausbau der erneuerbaren Energien in Deutschland bei Berücksichtigung der Entwicklung in Europa und global. http://www.dlr.de/dlr/Portaldata/1/Resources/bilder/portal/portal_2012_1/leitstudie2011_bf.pdf. Cited 11. Aug 2015
  29. oemof—Open Energy Modelling Framework: Documentation (2016a). Overview —the idea of an open framework. http://oemof.readthedocs.io/en/stable/overview.html. Cited 05. Jun. 2016
  30. oemof—Open Energy Modelling Framework (2016b). Github repository. https://github.com/oemof. Cited 05. Jun. 2016
  31. Okkonen, L., & Lehtonen, O. (2016). Socio-economic impacts of community wind power projects in northern scotland. Renewable Energy, 85, 826–833. doi: 10.1016/j.renene.2015.07.047.CrossRefGoogle Scholar
  32. OpenStreetMap.org (2015). Geofabik aufbereiter OpenStreetMap Datensatz. http://download.geofabrik.de/europe/germany-latest.osm.pbf. Cited 18. Mar 2015
  33. Regionaldatenbank Deutschland (2014) Datensätzen der statistischen Ämter des Bundes und der Länder. https://www.regionalstatistik.de/genesis/online/logon. Cited 23. Feb 2015
  34. Schweizer, V.J. & Kurniawan, J.H. (2016). Systematically linking qualitative elements of scenarios across levels, scales, and sectors. Environmental Modelling & Software. doi: 10.1016/j.envsoft.2015.12.014. In Press
  35. Söderholm, P., Hildingsson, R., Johansson, B., Khan, J., & Wilhelmsson, F. (2011). Governing the transition to low-carbon futures: A critical survey of energy scenarios for 2050. Futures, 43(10), 1105–1116. doi: 10.1016/j.futures.2011.07.009.CrossRefGoogle Scholar
  36. Trutnevyte, E., Barton, J., O’Grady, Á., Ogunkunle, D., Pudjianto, D., & Robertson, E. (2014). Linking a storyline with multiple models: A cross-scale study of the uk power system transition. Technological Forecasting and Social Change, 89, 26–42. doi: 10.1016/j.techfore.2014.08.018.CrossRefGoogle Scholar
  37. van Notten, P. W., Rotmans, J., van Asselt, M. B., & Rothman, D. S. (2003). An updated scenario typology. Futures, 35(5), 423–443. doi: 10.1016/S0016-3287(02)00090-3.CrossRefGoogle Scholar
  38. Varho, V., & Tapio, P. (2013). Combining the qualitative and quantitative with the Q2 scenario technique—The case of transport and climate. Technological Forecasting and Social Change, 80(4), 611–630. doi: 10.1016/j.techfore.2012.09.004.CrossRefGoogle Scholar
  39. Weimer-Jehle, W. (2013). ScenarioWizard 4.1 Constructing Consistent Scenarios Using Cross-Impact Balance Analysis. ZIRIUS. http://www.cross-impact.de/Ressourcen/ScenarioWizardManual_en.pdf. Cited 26. Feb 2016
  40. Weimer-Jehle, W., Prehofer, S., & Vögele, S. (2013). Kontextszenarien. Ein Konzept zur Behandlung von Kontextunsicherheit und Kontextkomplexität bei der Entwicklung von Energieszenarien. Technikfolgenabschätzung—Theorie und. Praxis, 2, 27–36.Google Scholar
  41. Weimer-Jehle, W. (2006). Cross-impact balances: A system-theoretical approach to cross-impact analysis. Technological Forecasting and Social Change, 73(4), 334–361. doi: 10.1016/j.techfore.2005.06.005.CrossRefGoogle Scholar
  42. Wiese, F. (2014). Renpass–Renewable Energy Pathways Simulation System—Open source as an approach to meet challenges in energy modeling. Ph.D. thesis, Europa-Universität Flensburg. http://renpass.eu. Cited 10. Jan 2016
  43. Wilson, I. (2000). From scenario thinking to strategic action. Technological Forecasting and Social Change, 65(1), 23–29. doi: 10.1016/S0040-1625(99)00122-5.CrossRefGoogle Scholar
  44. Wüstenhagen, R., Wolsink, M., & Bürer, M. J. (2007). Social acceptance of renewable energy innovation: An introduction to the concept. Energy Policy, 35, 2683–2691. doi: 10.1016/j.enpol.2006.12.001.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Marion Christ
    • 1
    Email author
  • Martin Soethe
    • 1
  • Melanie Degel
    • 2
  • Clemens Wingenbach
    • 1
  1. 1.Europa-Universität ZNES FlensburgFlensburgGermany
  2. 2.IZTBerlinGermany

Personalised recommendations