Influences of Germline Cells on Organismal Lifespan and Healthspan

  • Francis R. G. Amrit
  • Arjumand GhaziEmail author
Part of the Healthy Ageing and Longevity book series (HAL)


Historically, research has focused on the detrimental effects of ageing on fertility, but studies in the last two decades have shown that reproductive status profoundly impacts the length and quality of life. The nematode C. elegans has been at the forefront of these discoveries that have led to a fundamental transformation in our understanding of the relationship between procreation and lifespan in metazoans. In C. elegans, removing a population of proliferative germline-stem cells (GSCs) confers long life and enhances stress resilience. Germline loss is a major physiological challenge that compels the animal to arrest reproduction and reorganize its metabolic profile, so the phenomenon also provides a unique platform to understand how complex metazoans cope with changes in fertility and age. Recent studies have shown that GSC depletion triggers the activation of a group of conserved transcription factors in somatic cells. The transcriptional changes orchestrated by these proteins alter lipid metabolism, proteasomal function, autophagy and stress resistance, events that likely facilitate the adaptation to germline loss and lead to improved health and longevity. Here, we review the current literature on this longevity paradigm and the contributions made by C. elegans to understanding the molecular basis of the reproductive control of ageing.


Ageing Reproduction Germline Lipid metabolism glp-1 Longevity Transcription Factor Autophagy Proteostasis 


  1. 1.
    Chapman T, Liddle LF, Kalb JM, Wolfner MF, Partridge L (1995) Cost of mating in Drosophila melanogaster females is mediated by male accessory gland products. Nature 373(6511):241–244. doi: 10.1038/373241a0 PubMedCrossRefGoogle Scholar
  2. 2.
    Shi C, Murphy CT (2014) Mating induces shrinking and death in Caenorhabditis mothers. Science 343(6170):536–540. doi: 10.1126/science.1242958 PubMedCrossRefGoogle Scholar
  3. 3.
    Maures TJ, Booth LN, Benayoun BA, Izrayelit Y, Schroeder FC, Brunet A (2014) Males shorten the life span of C. elegans hermaphrodites via secreted compounds. Science 343(6170):541–544. doi: 10.1126/science.1244160 PubMedCrossRefGoogle Scholar
  4. 4.
    Crudgington HS, Siva-Jothy MT (2000) Genital damage, kicking and early death. Nature 407(6806):855–856. doi: 10.1038/35038154 PubMedCrossRefGoogle Scholar
  5. 5.
    Blanckenhorn WU, Hosken DJ, Martin OY, Reim C, Teuschl Y, Ward PI (2002) The costs of copulating in the dung fly Sepsis cynipsea. Behav Ecol 13(3):353–358. doi: 10.1093/beheco/13.3.353 CrossRefGoogle Scholar
  6. 6.
    Gwynne DT (2008) Sexual conflict over nuptial gifts in insects. Annu Rev Entomol 53:83–101. doi: 10.1146/annurev.ento.53.103106.093423 PubMedCrossRefGoogle Scholar
  7. 7.
    Boggs CL, Gilbert LE (1979) Male contribution to egg production in butterflies: evidence for transfer of nutrients at mating. Science 206(4414):83–84. doi: 10.1126/science.206.4414.83 PubMedCrossRefGoogle Scholar
  8. 8.
    Aprison EZ, Ruvinsky I (2015) Sex pheromones of C. elegans males prime the female reproductive system and ameliorate the effects of heat stress. PLoS Genet 11(12):e1005729. doi: 10.1371/journal.pgen.1005729 PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Partridge L, Gems D, Withers DJ (2005) Sex and death: what is the connection? Cell 120(4):461–472. doi: 10.1016/j.cell.2005.01.026 PubMedCrossRefGoogle Scholar
  10. 10.
    Law R (1979) The cost of reproduction in annual meadow grass. Am Nat 113(1):3–16CrossRefGoogle Scholar
  11. 11.
    Butlin RK, Day TH (1985) Adult size, longevity and fecundity in the seaweed fly, Coelopa-Frigida. Heredity 54:107–110. doi: 10.1038/hdy.1985.14 CrossRefGoogle Scholar
  12. 12.
    Kirkwood TB (1977) Evolution of ageing. Nature 270(5635):301–304PubMedCrossRefGoogle Scholar
  13. 13.
    Ricklefs RE, Cadena CD (2007) Lifespan is unrelated to investment in reproduction in populations of mammals and birds in captivity. Ecol Lett 10(10):867–872. doi: 10.1111/j.1461-0248.2007.01085.x PubMedCrossRefGoogle Scholar
  14. 14.
    Westendorp RG, Kirkwood TB (1998) Human longevity at the cost of reproductive success. Nature 396(6713):743–746. doi: 10.1038/25519 PubMedCrossRefGoogle Scholar
  15. 15.
    Gavrilova NS, Gavrilov LA (2005) Human longevity and reproduction: an evolutionary perspective. In: Voland E, Chasiotis A, Schiefenhoevel W (eds) Grandmotherhood – the evolutionary significance of the second half of female life. Rutgers University Press, Piscataway, pp 59–80Google Scholar
  16. 16.
    Korpelainen H (2000) Fitness, reproduction and longevity among European aristocratic and rural Finnish families in the 1700s and 1800s. Proc Biol Sci 267(1454):1765–1770. doi: 10.1098/rspb.2000.1208 PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Le Bourg É (2001) A mini-review of the evolutionary theories of aging: is it the time to accept them? Demogr Res 4(1):1–28. doi: 10.4054/DemRes.2001.4.1 CrossRefGoogle Scholar
  18. 18.
    Mitteldorf J (2010) Female fertility and longevity. Age (Dordr) 32(1):79–84. doi: 10.1007/s11357-009-9116-1 CrossRefGoogle Scholar
  19. 19.
    Keith SA, Ghazi A (2015) Recent discoveries in the reproductive control of aging. Curr Genet Med Rep 3(1):26–34CrossRefGoogle Scholar
  20. 20.
    Hsin H, Kenyon C (1999) Signals from the reproductive system regulate the lifespan of C. elegans. Nature 399(6734):362–366. doi: 10.1038/20694 PubMedCrossRefGoogle Scholar
  21. 21.
    Austin J, Kimble J (1987) glp-1 is required in the germ line for regulation of the decision between mitosis and meiosis in C. elegans. Cell 51(4):589–599PubMedCrossRefGoogle Scholar
  22. 22.
    Arantes-Oliveira N, Apfeld J, Dillin A, Kenyon C (2002) Regulation of life-span by germ-line stem cells in C. elegans. Science 295(5554):502–505. doi: 10.1126/science.1065768 PubMedCrossRefGoogle Scholar
  23. 23.
    Flatt T, Min KJ, D’Alterio C, Villa-Cuesta E, Cumbers J, Lehmann R, Jones DL, Tatar M (2008) Drosophila germ-line modulation of insulin signaling and lifespan. Proc Natl Acad Sci U S A 105(17):6368–6373. doi: 10.1073/pnas.0709128105 PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Cargill SL, Carey JR, Muller HG, Anderson G (2003) Age of ovary determines remaining life expectancy in old ovariectomized mice. Aging Cell 2(3):185–190PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Mason JB, Cargill SL, Anderson GB, Carey JR (2009) Transplantation of young ovaries to old mice increased life span in transplant recipients. J Gerontol Ser A Biol Sci Med Sci 64(12):1207–1211. doi: 10.1093/gerona/glp134 CrossRefGoogle Scholar
  26. 26.
    Kenyon CJ (2010) The genetics of ageing. Nature 464(7288):504–512. doi: 10.1038/nature08980 PubMedCrossRefGoogle Scholar
  27. 27.
    Lin K, Hsin H, Libina N, Kenyon C (2001) Regulation of the C. elegans longevity protein DAF-16 by insulin/IGF-1 and germline signaling. Nat Genet 28(2):139–145. doi: 10.1038/88850 PubMedCrossRefGoogle Scholar
  28. 28.
    Libina N, Berman JR, Kenyon C (2003) Tissue-specific activities of C. elegans DAF-16 in the regulation of lifespan. Cell 115(4):489–502PubMedCrossRefGoogle Scholar
  29. 29.
    Berman JR, Kenyon C (2006) Germ-cell loss extends C. elegans life span through regulation of DAF-16 by kri-1 and lipophilic-hormone signaling. Cell 124(5):1055–1068. doi: 10.1016/j.cell.2006.01.039 PubMedCrossRefGoogle Scholar
  30. 30.
    Ghazi A, Henis-Korenblit S, Kenyon C (2009) A transcription elongation factor that links signals from the reproductive system to lifespan extension in C. elegans. PLoS Genet 5(9):e1000639. doi: 10.1371/journal.pgen.1000639 PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Antebi A, Yeh WH, Tait D, Hedgecock EM, Riddle DL (2000) daf-12 encodes a nuclear receptor that regulates the dauer diapause and developmental age in C. elegans. Genes Dev 14(12):1512–1527PubMedPubMedCentralGoogle Scholar
  32. 32.
    Motola DL, Cummins CL, Rottiers V, Sharma KK, Li T, Li Y, Suino-Powell K, Xu HE, Auchus RJ, Antebi A, Mangelsdorf DJ (2006) Identification of ligands for DAF-12 that govern dauer formation and reproduction in C. elegans. Cell 124(6):1209–1223. doi: 10.1016/j.cell.2006.01.037 PubMedCrossRefGoogle Scholar
  33. 33.
    Gerisch B, Rottiers V, Li D, Motola DL, Cummins CL, Lehrach H, Mangelsdorf DJ, Antebi A (2007) A bile acid-like steroid modulates C. elegans lifespan through nuclear receptor signaling. Proc Natl Acad Sci U S A 104(12):5014–5019. doi: 10.1073/pnas.0700847104 PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Shen Y, Wollam J, Magner D, Karalay O, Antebi A (2012) A steroid receptor-microRNA switch regulates life span in response to signals from the gonad. Science 338(6113):1472–1476. doi: 10.1126/science.1228967 PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Hertweck M, Gobel C, Baumeister R (2004) C. elegans SGK-1 is the critical component in the Akt/PKB kinase complex to control stress response and life span. Dev Cell 6(4):577–588PubMedCrossRefGoogle Scholar
  36. 36.
    Boehm M, Slack F (2005) A developmental timing microRNA and its target regulate life span in C. elegans. Science 310(5756):1954–1957. doi: 10.1126/science.1115596 PubMedCrossRefGoogle Scholar
  37. 37.
    Boulias K, Horvitz HR (2012) The C. elegans microRNA mir-71 acts in neurons to promote germline-mediated longevity through regulation of DAF-16/FOXO. Cell Metab 15(4):439–450. doi: 10.1016/j.cmet.2012.02.014 PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Gerisch B, Weitzel C, Kober-Eisermann C, Rottiers V, Antebi A (2001) A hormonal signaling pathway influencing C. elegans metabolism, reproductive development, and life span. Dev Cell 1(6):841–851PubMedCrossRefGoogle Scholar
  39. 39.
    Rottiers V, Motola DL, Gerisch B, Cummins CL, Nishiwaki K, Mangelsdorf DJ, Antebi A (2006) Hormonal control of C. elegans dauer formation and life span by a Rieske-like oxygenase. Dev Cell 10(4):473–482. doi: 10.1016/j.devcel.2006.02.008 PubMedCrossRefGoogle Scholar
  40. 40.
    Wollam J, Magner DB, Magomedova L, Rass E, Shen Y, Rottiers V, Habermann B, Cummins CL, Antebi A (2012) A novel 3-hydroxysteroid dehydrogenase that regulates reproductive development and longevity. PLoS Biol 10(4):e1001305. doi: 10.1371/journal.pbio.1001305 PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Yamawaki TM, Berman JR, Suchanek-Kavipurapu M, McCormick M, Gaglia MM, Lee SJ, Kenyon C (2010) The somatic reproductive tissues of C. elegans promote longevity through steroid hormone signaling. PLoS Biol 8(8):e1000468. doi: 10.1371/journal.pbio.1000468 PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Li TM, Liu W, Lu S, Zhang YP, Jia LM, Chen J, Li X, Lei X, Dong MQ (2015) No significant increase in the delta4- and delta7-dafachronic acid concentration in the long-lived glp-1 mutant, nor in the mutants defective in dauer formation. G3 (Bethesda) 5(7):1473–1479. doi: 10.1534/g3.115.018812 CrossRefGoogle Scholar
  43. 43.
    Goudeau J, Bellemin S, Toselli-Mollereau E, Shamalnasab M, Chen Y, Aguilaniu H (2011) Fatty acid desaturation links germ cell loss to longevity through NHR-80/HNF4 in C. elegans. PLoS Biol 9(3):e1000599. doi: 10.1371/journal.pbio.1000599 PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Ratnappan R, Amrit FR, Chen SW, Gill H, Holden K, Ward J, Yamamoto KR, Olsen CP, Ghazi A (2014) Germline signals deploy NHR-49 to modulate fatty-acid beta-oxidation and desaturation in somatic tissues of C. elegans. PLoS Genet 10(12):e1004829. doi: 10.1371/journal.pgen.1004829 PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Evans RM, Mangelsdorf DJ (2014) Nuclear receptors, RXR, and the big bang. Cell 157(1):255–266. doi: 10.1016/j.cell.2014.03.012 PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Van Gilst MR, Hadjivassiliou H, Jolly A, Yamamoto KR (2005) Nuclear hormone receptor NHR-49 controls fat consumption and fatty acid composition in C. elegans. PLoS Biol 3(2):e53. doi: 10.1371/journal.pbio.0030053 PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Van Gilst MR, Hadjivassiliou H, Yamamoto KR (2005) A C. elegans nutrient response system partially dependent on nuclear receptor NHR-49. Proc Natl Acad Sci U S A 102(38):13496–13501. doi: 10.1073/pnas.0506234102 PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Folick A, Oakley HD, Yu Y, Armstrong EH, Kumari M, Sanor L, Moore DD, Ortlund EA, Zechner R, Wang MC (2015) Aging. Lysosomal signaling molecules regulate longevity in C. elegans. Science 347(6217):83–86. doi: 10.1126/science.1258857 PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Antebi A (2015) Nuclear receptor signal transduction in C. elegans. In: WormBook. The C. elegans research community, WormBookGoogle Scholar
  50. 50.
    Burkewitz K, Morantte I, Weir HJ, Yeo R, Zhang Y, Huynh FK, Ilkayeva OR, Hirschey MD, Grant AR, Mair WB (2015) Neuronal CRTC-1 governs systemic mitochondrial metabolism and lifespan via a catecholamine signal. Cell 160(5):842–855. doi: 10.1016/j.cell.2015.02.004 PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Ratnappan R, Ward JD, Yamamoto KR, Ghazi A (2016) Nuclear hormone receptors as mediators of metabolic adaptability following reproductive perturbations. Worm 5:e1151609. doi: 10.1080/21624054.2016.1151609 PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Panowski SH, Wolff S, Aguilaniu H, Durieux J, Dillin A (2007) PHA-4/Foxa mediates diet-restriction-induced longevity of C. elegans. Nature 447(7144):550–555. doi: 10.1038/nature05837 PubMedCrossRefGoogle Scholar
  53. 53.
    Bishop NA, Guarente L (2007) Two neurons mediate diet-restriction-induced longevity in C. elegans. Nature 447(7144):545–549. doi: 10.1038/nature05904 PubMedCrossRefGoogle Scholar
  54. 54.
    Lapierre LR, Gelino S, Melendez A, Hansen M (2011) Autophagy and lipid metabolism coordinately modulate life span in germline-less C. elegans. Curr Biol CB 21(18):1507–1514. doi: 10.1016/j.cub.2011.07.042 PubMedCrossRefGoogle Scholar
  55. 55.
    Lapierre LR, De Magalhaes Filho CD, McQuary PR, Chu CC, Visvikis O, Chang JT, Gelino S, Ong B, Davis AE, Irazoqui JE, Dillin A, Hansen M (2013) The TFEB orthologue HLH-30 regulates autophagy and modulates longevity in C. elegans. Nat Commun 4:2267. doi: 10.1038/ncomms3267 PubMedGoogle Scholar
  56. 56.
    Settembre C, Di Malta C, Polito VA, Garcia Arencibia M, Vetrini F, Erdin S, Erdin SU, Huynh T, Medina D, Colella P, Sardiello M, Rubinsztein DC, Ballabio A (2011) TFEB links autophagy to lysosomal biogenesis. Science 332(6036):1429–1433. doi: 10.1126/science.1204592 PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Johnson DW, Llop JR, Farrell SF, Yuan J, Stolzenburg LR, Samuelson AV (2014) The C. elegans Myc-Mondo/Mad complexes integrate diverse longevity signals. PLoS Genet 10(4):e1004278. doi: 10.1371/journal.pgen.1004278 PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Nakamura S, Karalay O, Jager PS, Horikawa M, Klein C, Nakamura K, Latza C, Templer SE, Dieterich C, Antebi A (2016) Mondo complexes regulate TFEB via TOR inhibition to promote longevity in response to gonadal signals. Nat Commun 7:10944. doi: 10.1038/ncomms10944 PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Tullet JM, Hertweck M, An JH, Baker J, Hwang JY, Liu S, Oliveira RP, Baumeister R, Blackwell TK (2008) Direct inhibition of the longevity-promoting factor SKN-1 by insulin-like signaling in C. elegans. Cell 132(6):1025–1038. doi: 10.1016/j.cell.2008.01.030 PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Bowerman B, Draper BW, Mello CC, Priess JR (1993) The maternal gene skn-1 encodes a protein that is distributed unequally in early C. elegans embryos. Cell 74(3):443–452PubMedCrossRefGoogle Scholar
  61. 61.
    Vilchez D, Morantte I, Liu Z, Douglas PM, Merkwirth C, Rodrigues AP, Manning G, Dillin A (2012) RPN-6 determines C. elegans longevity under proteotoxic stress conditions. Nature 489(7415):263–268. doi: 10.1038/nature11315 PubMedCrossRefGoogle Scholar
  62. 62.
    Steinbaugh MJ, Narasimhan SD, Robida-Stubbs S, Moronetti Mazzeo LE, Dreyfuss JM, Hourihan JM, Raghavan P, Operana TN, Esmaillie R, Blackwell TK (2015) Lipid-mediated regulation of SKN-1/Nrf in response to germ cell absence. Elife 4. doi: 10.7554/eLife.07836
  63. 63.
    Wei Y, Kenyon C (2016) Roles for ROS and hydrogen sulfide in the longevity response to germline loss in C. elegans. Proc Natl Acad Sci U S A 113(20):E2832–E2841. doi: 10.1073/pnas.1524727113 PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Miller DL, Budde MW, Roth MB (2011) HIF-1 and SKN-1 coordinate the transcriptional response to hydrogen sulfide in C. elegans. PLoS ONE 6(9):e25476. doi: 10.1371/journal.pone.0025476 PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Hansen M, Hsu AL, Dillin A, Kenyon C (2005) New genes tied to endocrine, metabolic, and dietary regulation of lifespan from a C. elegans genomic RNAi screen. PLoS Genet 1(1):119–128. doi: 10.1371/journal.pgen.0010017 PubMedCrossRefGoogle Scholar
  66. 66.
    Hsu AL, Murphy CT, Kenyon C (2003) Regulation of aging and age-related disease by DAF-16 and heat-shock factor. Science 300(5622):1142–1145. doi: 10.1126/science.1083701 PubMedCrossRefGoogle Scholar
  67. 67.
    Taubert S, Van Gilst MR, Hansen M, Yamamoto KR (2006) A mediator subunit, MDT-15, integrates regulation of fatty acid metabolism by NHR-49-dependent and -independent pathways in C. elegans. Genes Dev 20(9):1137–1149. doi: 10.1101/gad.1395406 PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Yang F, Vought BW, Satterlee JS, Walker AK, Jim Sun ZY, Watts JL, DeBeaumont R, Saito RM, Hyberts SG, Yang S, Macol C, Iyer L, Tjian R, van den Heuvel S, Hart AC, Wagner G, Naar AM (2006) An ARC/mediator subunit required for SREBP control of cholesterol and lipid homeostasis. Nature 442(7103):700–704. doi: 10.1038/nature04942 PubMedCrossRefGoogle Scholar
  69. 69.
    McCormick M, Chen K, Ramaswamy P, Kenyon C (2012) New genes that extend C. elegans lifespan in response to reproductive signals. Aging Cell 11(2):192–202. doi: 10.1111/j.1474-9726.2011.00768.x PubMedCrossRefGoogle Scholar
  70. 70.
    Sinha A, Rae R (2014) A functional genomic screen for evolutionarily conserved genes required for lifespan and immunity in germline-deficient C. elegans. PLoS ONE 9(8):e101970. doi: 10.1371/journal.pone.0101970 PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Amrit FR, Steenkiste EM, Ratnappan R, Chen SW, McClendon TB, Kostka D, Yanowitz J, Olsen CP, Ghazi A (2016) DAF-16 and TCER-1 facilitate adaptation to germline loss by restoring lipid homeostasis and repressing reproductive physiology in C. elegans. PLoS Genet 12(2):e1005788. doi: 10.1371/journal.pgen.1005788
  72. 72.
    O’Rourke EJ, Soukas AA, Carr CE, Ruvkun G (2009) C. elegans major fats are stored in vesicles distinct from lysosome-related organelles. Cell Metab 10(5):430–435. doi: 10.1016/j.cmet.2009.10.002 PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Doane WW (1961) Developmental physiology of the mutant female sterile(2)adipose of Drosophila melanogaster. III. Corpus allatum-complex and ovarian transplantations. J Exp Zool 146:275–298PubMedCrossRefGoogle Scholar
  74. 74.
    Butterworth FM, Bodenstein D (1968) Adipose tissue of Drosophila melanogaster. 3. The effect of the ovary on cell growth and the storage of lipid and glycogen in the adult tissue. J Exp Zool 167(2):207–217. doi: 10.1002/jez.1401670209 PubMedCrossRefGoogle Scholar
  75. 75.
    Judd ET, Wessels FJ, Drewry MD, Grove M, Wright K, Hahn DA, Hatle JD (2011) Ovariectomy in grasshoppers increases somatic storage, but proportional allocation of ingested nutrients to somatic tissues is unchanged. Aging Cell 10(6):972–979. doi: 10.1111/j.1474-9726.2011.00737.x PubMedCrossRefGoogle Scholar
  76. 76.
    Strong L (1967) Feeding activity, sexual maturation, hormones, and water balance in the female African migratory locust. J Insect Physiol 13(4):495–507, doi: CrossRefGoogle Scholar
  77. 77.
    Thomsen E, Hamburger K (1955) Oxygen consumption of castrated females of the blow-fly, Calliphora Erythrocephala Meig. J Exp Biol 32(4):692–699Google Scholar
  78. 78.
    Pallier E, Aubert R, Lemonnier D (1980) Effect of diet and ovariectomy on adipose tissue cellularity in mice. Reprod Nutr Dev 20(3A):631–636PubMedCrossRefGoogle Scholar
  79. 79.
    McElroy JF, Wade GN (1987) Short- and long-term effects of ovariectomy on food intake, body weight, carcass composition, and brown adipose tissue in rats. Physiol Behav 39(3):361–365PubMedCrossRefGoogle Scholar
  80. 80.
    Fettman MJ, Stanton CA, Banks LL, Hamar DW, Johnson DE, Hegstad RL, Johnston S (1997) Effects of neutering on bodyweight, metabolic rate and glucose tolerance of domestic cats. Res Vet Sci 62(2):131–136PubMedCrossRefGoogle Scholar
  81. 81.
    Crane SW (1991) Occurrence and management of obesity in companion animals. J Small Anim Pract 32(6):275–282. doi: 10.1111/j.1748-5827.1991.tb00930.x CrossRefGoogle Scholar
  82. 82.
    Corona G, Mannucci E, Forti G, Maggi M (2009) Hypogonadism, ED, metabolic syndrome and obesity: a pathological link supporting cardiovascular diseases. Int J Androl 32(6):587–598. doi: 10.1111/j.1365-2605.2008.00951.x PubMedCrossRefGoogle Scholar
  83. 83.
    Hahm JH, Kim S, DiLoreto R, Shi C, Lee SJ, Murphy CT, Nam HG (2015) C. elegans maximum velocity correlates with healthspan and is maintained in worms with an insulin receptor mutation. Nat Commun 6:8919. doi: 10.1038/ncomms9919 PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Bohni R, Riesgo-Escovar J, Oldham S, Brogiolo W, Stocker H, Andruss BF, Beckingham K, Hafen E (1999) Autonomous control of cell and organ size by CHICO, a Drosophila homolog of vertebrate IRS1-4. Cell 97(7):865–875PubMedCrossRefGoogle Scholar
  85. 85.
    Zhang H, Stallock JP, Ng JC, Reinhard C, Neufeld TP (2000) Regulation of cellular growth by the Drosophila target of rapamycin dTOR. Genes Dev 14(21):2712–2724PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Liu X, Huh JY, Gong H, Chamberland JP, Brinkoetter MT, Hamnvik OP, Mantzoros CS (2015) Lack of mature lymphocytes results in obese but metabolically healthy mice when fed a high-fat diet. Int J Obes (Lond) 39(10):1548–1557. doi: 10.1038/ijo.2015.93 CrossRefGoogle Scholar
  87. 87.
    Kim JY, van de Wall E, Laplante M, Azzara A, Trujillo ME, Hofmann SM, Schraw T, Durand JL, Li H, Li G, Jelicks LA, Mehler MF, Hui DY, Deshaies Y, Shulman GI, Schwartz GJ, Scherer PE (2007) Obesity-associated improvements in metabolic profile through expansion of adipose tissue. J Clin Invest 117(9):2621–2637. doi: 10.1172/JCI31021 PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Naukkarinen J, Heinonen S, Hakkarainen A, Lundbom J, Vuolteenaho K, Saarinen L, Hautaniemi S, Rodriguez A, Fruhbeck G, Pajunen P, Hyotylainen T, Oresic M, Moilanen E, Suomalainen A, Lundbom N, Kaprio J, Rissanen A, Pietilainen KH (2014) Characterising metabolically healthy obesity in weight-discordant monozygotic twins. Diabetologia 57(1):167–176. doi: 10.1007/s00125-013-3066-y PubMedCrossRefGoogle Scholar
  89. 89.
    Hansen M, Flatt T, Aguilaniu H (2013) Reproduction, fat metabolism, and life span: what is the connection? Cell Metab 17(1):10–19. doi: 10.1016/j.cmet.2012.12.003 PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Ackerman D, Gems D (2012) The mystery of C. elegans aging: an emerging role for fat. Distant parallels between C. elegans aging and metabolic syndrome? Bioessays 34(6):466–471. doi: 10.1002/bies.201100189 PubMedCrossRefGoogle Scholar
  91. 91.
    Katewa SD, Demontis F, Kolipinski M, Hubbard A, Gill MS, Perrimon N, Melov S, Kapahi P (2012) Intramyocellular fatty-acid metabolism plays a critical role in mediating responses to dietary restriction in Drosophila melanogaster. Cell Metab 16(1):97–103. doi: 10.1016/j.cmet.2012.06.005 PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Bruss MD, Khambatta CF, Ruby MA, Aggarwal I, Hellerstein MK (2010) Calorie restriction increases fatty acid synthesis and whole body fat oxidation rates. Am J Physiol Endocrinol Metab 298(1):E108–E116. doi: 10.1152/ajpendo.00524.2009 PubMedCrossRefGoogle Scholar
  93. 93.
    Arner P, Bernard S, Salehpour M, Possnert G, Liebl J, Steier P, Buchholz BA, Eriksson M, Arner E, Hauner H, Skurk T, Ryden M, Frayn KN, Spalding KL (2011) Dynamics of human adipose lipid turnover in health and metabolic disease. Nature 478(7367):110–113. doi: 10.1038/nature10426 PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Goodpaster BH, He J, Watkins S, Kelley DE (2001) Skeletal muscle lipid content and insulin resistance: evidence for a paradox in endurance-trained athletes. J Clin Endocrinol Metab 86(12):5755–5761. doi: 10.1210/jcem.86.12.8075 PubMedCrossRefGoogle Scholar
  95. 95.
    Savary S, Trompier D, Andreoletti P, Le Borgne F, Demarquoy J, Lizard G (2012) Fatty acids – induced lipotoxicity and inflammation. Curr Drug Metab 13(10):1358–1370PubMedCrossRefGoogle Scholar
  96. 96.
    Zhou YP, Grill V (1995) Long term exposure to fatty acids and ketones inhibits B-cell functions in human pancreatic islets of Langerhans. J Clin Endocrinol Metab 80(5):1584–1590. doi: 10.1210/jcem.80.5.7745004 PubMedGoogle Scholar
  97. 97.
    Wang MC, O’Rourke EJ, Ruvkun G (2008) Fat metabolism links germline stem cells and longevity in C. elegans. Science 322(5903):957–960. doi: 10.1126/science.1162011 PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Haemmerle G, Moustafa T, Woelkart G, Buttner S, Schmidt A, van de Weijer T, Hesselink M, Jaeger D, Kienesberger PC, Zierler K, Schreiber R, Eichmann T, Kolb D, Kotzbeck P, Schweiger M, Kumari M, Eder S, Schoiswohl G, Wongsiriroj N, Pollak NM, Radner FP, Preiss-Landl K, Kolbe T, Rulicke T, Pieske B, Trauner M, Lass A, Zimmermann R, Hoefler G, Cinti S, Kershaw EE, Schrauwen P, Madeo F, Mayer B, Zechner R (2011) ATGL-mediated fat catabolism regulates cardiac mitochondrial function via PPAR-alpha and PGC-1. Nat Med 17(9):1076–1085. doi: 10.1038/nm.2439 PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Chakravarthy MV, Pan Z, Zhu Y, Tordjman K, Schneider JG, Coleman T, Turk J, Semenkovich CF (2005) “New” hepatic fat activates PPARalpha to maintain glucose, lipid, and cholesterol homeostasis. Cell Metab 1(5):309–322. doi: 10.1016/j.cmet.2005.04.002 PubMedCrossRefGoogle Scholar
  100. 100.
    Ferreira CR, Saraiva SA, Catharino RR, Garcia JS, Gozzo FC, Sanvido GB, Santos LF, Lo Turco EG, Pontes JH, Basso AC, Bertolla RP, Sartori R, Guardieiro MM, Perecin F, Meirelles FV, Sangalli JR, Eberlin MN (2010) Single embryo and oocyte lipid fingerprinting by mass spectrometry. J Lipid Res 51(5):1218–1227. doi: 10.1194/jlr.D001768 PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Morgan NG, Dhayal S, Diakogiannaki E, Welters HJ (2008) The cytoprotective actions of long-chain mono-unsaturated fatty acids in pancreatic beta-cells. Biochem Soc Trans 36(Pt 5):905–908. doi: 10.1042/bst0360905 PubMedCrossRefGoogle Scholar
  102. 102.
    Gonzalez-Covarrubias V, Beekman M, Uh HW, Dane A, Troost J, Paliukhovich I, van der Kloet FM, Houwing-Duistermaat J, Vreeken RJ, Hankemeier T, Slagboom EP (2013) Lipidomics of familial longevity. Aging Cell 12(3):426–434. doi: 10.1111/acel.12064 PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Wileman T (2013) Autophagy as a defence against intracellular pathogens. Essays Biochem 55:153–163. doi: 10.1042/bse0550153 PubMedCrossRefGoogle Scholar
  104. 104.
    Madeo F, Zimmermann A, Maiuri MC, Kroemer G (2015) Essential role for autophagy in life span extension. J Clin Invest 125(1):85–93. doi: 10.1172/JCI73946 PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Melendez A, Talloczy Z, Seaman M, Eskelinen EL, Hall DH, Levine B (2003) Autophagy genes are essential for dauer development and life-span extension in C. elegans. Science 301(5638):1387–1391. doi: 10.1126/science.1087782 PubMedCrossRefGoogle Scholar
  106. 106.
    O’Rourke EJ, Ruvkun G (2013) MXL-3 and HLH-30 transcriptionally link lipolysis and autophagy to nutrient availability. Nat Cell Biol 15(6):668–676. doi: 10.1038/ncb2741 PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    O’Rourke EJ, Kuballa P, Xavier R, Ruvkun G (2013) Omega-6 polyunsaturated fatty acids extend life span through the activation of autophagy. Genes Dev 27(4):429–440. doi: 10.1101/gad.205294.112 PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Liu K, Czaja MJ (2013) Regulation of lipid stores and metabolism by lipophagy. Cell Death Differ 20(1):3–11. doi: 10.1038/cdd.2012.63 PubMedCrossRefGoogle Scholar
  109. 109.
    Lapierre LR, Silvestrini MJ, Nunez L, Ames K, Wong S, Le TT, Hansen M, Melendez A (2013) Autophagy genes are required for normal lipid levels in C. elegans. Autophagy 9(3):278–286. doi: 10.4161/auto.22930 PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Ghazi A, Henis-Korenblit S, Kenyon C (2007) Regulation of C. elegans lifespan by a proteasomal E3 ligase complex. Proc Natl Acad Sci U S A 104(14):5947–5952. doi: 10.1073/pnas.0700638104 PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Carrano AC, Liu Z, Dillin A, Hunter T (2009) A conserved ubiquitination pathway determines longevity in response to diet restriction. Nature 460(7253):396–399. doi: 10.1038/nature08130 PubMedPubMedCentralGoogle Scholar
  112. 112.
    Li W, Gao B, Lee SM, Bennett K, Fang D (2007) RLE-1, an E3 ubiquitin ligase, regulates C. elegans aging by catalyzing DAF-16 polyubiquitination. Dev Cell 12(2):235–246. doi: 10.1016/j.devcel.2006.12.002 PubMedCrossRefGoogle Scholar
  113. 113.
    Vilchez D, Saez I, Dillin A (2014) The role of protein clearance mechanisms in organismal ageing and age-related diseases. Nat Commun 5:5659. doi: 10.1038/ncomms6659 PubMedCrossRefGoogle Scholar
  114. 114.
    Ben-Zvi A, Miller EA, Morimoto RI (2009) Collapse of proteostasis represents an early molecular event in C. elegans aging. Proc Natl Acad Sci U S A 106(35):14914–14919. doi: 10.1073/pnas.0902882106 PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Shemesh N, Shai N, Ben-Zvi A (2013) Germline stem cell arrest inhibits the collapse of somatic proteostasis early in C. elegans adulthood. Aging Cell 12(5):814–822. doi: 10.1111/acel.12110 PubMedCrossRefGoogle Scholar
  116. 116.
    Vilchez D, Boyer L, Morantte I, Lutz M, Merkwirth C, Joyce D, Spencer B, Page L, Masliah E, Berggren WT, Gage FH, Dillin A (2012) Increased proteasome activity in human embryonic stem cells is regulated by PSMD11. Nature 489(7415):304–308. doi: 10.1038/nature11468 PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Zhou KI, Pincus Z, Slack FJ (2011) Longevity and stress in C. elegans. Aging (Albany NY) 3(8):733–753CrossRefGoogle Scholar
  118. 118.
    Keith SA, Amrit FR, Ratnappan R, Ghazi A (2014) The C. elegans healthspan and stress-resistance assay toolkit. Methods (San Diego, Calif) 68(3):476–486. doi: 10.1016/j.ymeth.2014.04.003 CrossRefGoogle Scholar
  119. 119.
    Labbadia J, Morimoto RI (2015) Repression of the heat shock response is a programmed event at the onset of reproduction. Mol Cell 59(4):639–650. doi: 10.1016/j.molcel.2015.06.027 PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    TeKippe M, Aballay A (2010) C. elegans germline-deficient mutants respond to pathogen infection using shared and distinct mechanisms. PLoS ONE 5(7):e11777. doi: 10.1371/journal.pone.0011777 PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Evans EA, Kawli T, Tan MW (2008) Pseudomonas aeruginosa suppresses host immunity by activating the DAF-2 insulin-like signaling pathway in C. elegans. PLoS Pathog 4(10):e1000175. doi: 10.1371/journal.ppat.1000175 PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Alper S, McElwee MK, Apfeld J, Lackford B, Freedman JH, Schwartz DA (2010) The C. elegans germ line regulates distinct signaling pathways to control lifespan and innate immunity. J Biol Chem 285(3):1822–1828. doi: 10.1074/jbc.M109.057323 PubMedCrossRefGoogle Scholar
  123. 123.
    Miyata S, Begun J, Troemel ER, Ausubel FM (2008) DAF-16-dependent suppression of immunity during reproduction in C. elegans. Genetics 178(2):903–918. doi: 10.1534/genetics.107.083923 PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Medina DL, Di Paola S, Peluso I, Armani A, De Stefani D, Venditti R, Montefusco S, Scotto-Rosato A, Prezioso C, Forrester A, Settembre C, Wang W, Gao Q, Xu H, Sandri M, Rizzuto R, De Matteis MA, Ballabio A (2015) Lysosomal calcium signalling regulates autophagy through calcineurin and TFEB. Nat Cell Biol 17(3):288–299. doi: 10.1038/ncb3114 PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Hartge P (2009) Genetics of reproductive lifespan. Nat Genet 41(6):637–638. doi: 10.1038/ng0609-637 PubMedCrossRefGoogle Scholar
  126. 126.
    De Vos M, Devroey P, Fauser BC (2010) Primary ovarian insufficiency. Lancet 376(9744):911–921. doi: 10.1016/S0140-6736(10)60355-8 PubMedCrossRefGoogle Scholar
  127. 127.
    Perheentupa A, Huhtaniemi I (2009) Aging of the human ovary and testis. Mol Cell Endocrinol 299(1):2–13. doi: 10.1016/j.mce.2008.11.004 PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Department of Paediatrics, Rangos Research CentreUniversity of PittsburghPittsburghUSA

Personalised recommendations