Autophagy and Ageing

Part of the Healthy Ageing and Longevity book series (HAL)


Autophagy is a conserved cellular recycling process that plays critical roles in development, disease, and ageing. During autophagy, cytosolic components are sequestered in double-membrane vesicles that ultimately fuse with lysosomes, where the cargo is degraded and recycled. Intriguingly, genetic and pharmacological experiments in C. elegans have shown that all of the longevity paradigms analysed to date, ranging from reduced insulin/IGF-1 signalling to spermidine supplementation, require autophagy genes for lifespan extension. Moreover, many of the long-lived animals show changes in steady-state levels of autophagy markers and/or display increased transcription of autophagy-related and lysosomal genes via conserved transcription factors such as HLH-30/TFEB. These observations are consistent with the notion that increased autophagy is critical for lifespan extension in C. elegans. Similar genetic links have been reported in other organisms, including flies and mice, where overexpression of certain autophagy-related genes is sufficient to extend lifespan. Although clearance of lipids (lipophagy) and mitochondria (mitophagy) have been proposed as selective types of autophagy with relevance to C. elegans ageing, it is still unclear how long-lived animals may induce autophagy to improve their overall healthspan, or how autophagy is regulated in different tissues during normal ageing. Understanding these mechanisms will be critical for targeting autophagy in higher organisms. This chapter summarizes our current knowledge of the links between autophagy and ageing in C. elegans.


Macroautophagy mTOR Atg8/LGG-1/2 Insulin/IGF-1 signalling Dietary restriction Germline removal Mitochondrial respiration Spermidine Resveratrol 



I wish to acknowledge Hansen lab members and Dr. Anne O’Rourke for feedback on the manuscript, and Dr. Caroline Kumsta for help with Table 15.2. MH was supported by NIH/NIA (R01 AG038664 and R01 AG039756) and a Julie Martin Mid-Career Award in Aging Research supported by The Ellison Medical Foundation and AFAR.


  1. 1.
    Levine B, Kroemer G (2008) Autophagy in the pathogenesis of disease. Cell 132(1):27–42. doi: 10.1016/j.cell.2007.12.018 PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Huang J, Klionsky DJ (2007) Autophagy and human disease. Cell Cycle 6(15):1837–1849PubMedCrossRefGoogle Scholar
  3. 3.
    Feng Y, He D, Yao Z, Klionsky DJ (2014) The machinery of macroautophagy. Cell Res 24(1):24–41. doi: 10.1038/cr.2013.168 PubMedCrossRefGoogle Scholar
  4. 4.
    Chan SN, Tang BL (2013) Location and membrane sources for autophagosome formation – from ER-mitochondria contact sites to Golgi-endosome-derived carriers. Mol Membr Biol 30(8):394–402. doi: 10.3109/09687688.2013.850178 PubMedCrossRefGoogle Scholar
  5. 5.
    Hamasaki M, Shibutani ST, Yoshimori T (2013) Up-to-date membrane biogenesis in the autophagosome formation. Curr Opin Cell Biol 25(4):455–460. doi: 10.1016/ PubMedCrossRefGoogle Scholar
  6. 6.
    Obara K, Ohsumi Y (2008) Dynamics and function of PtdIns(3)P in autophagy. Autophagy 4(7):952–954, doi:6790 [pii]PubMedCrossRefGoogle Scholar
  7. 7.
    Simonsen A, Tooze SA (2009) Coordination of membrane events during autophagy by multiple class III PI3-kinase complexes. J Cell Biol 186(6):773–782. doi:jcb.200907014 [pii] 10.1083/jcb.200907014Google Scholar
  8. 8.
    Reggiori F, Tucker KA, Stromhaug PE, Klionsky DJ (2004) The Atg1-Atg13 complex regulates Atg9 and Atg23 retrieval transport from the pre-autophagosomal structure. Dev Cell 6(1):79–90, doi:S1534580703004027 [pii]PubMedCrossRefGoogle Scholar
  9. 9.
    Mizushima N, Levine B (2010) Autophagy in mammalian development and differentiation. Nat Cell Biol 12(9):823–830. doi: 10.1038/ncb0910-823 PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Manil-Segalen M, Lefebvre C, Jenzer C, Trichet M, Boulogne C, Satiat-Jeunemaitre B, Legouis R (2014) The C. elegans LC3 acts downstream of GABARAP to degrade autophagosomes by interacting with the HOPS subunit VPS39. Dev Cell 28(1):43–55. doi: 10.1016/j.devcel.2013.11.022 PubMedCrossRefGoogle Scholar
  11. 11.
    Zhang H, Chang JT, Guo B, Hansen M, Jia K, Kovacs AL, Kumsta C, Lapierre LR, Legouis R, Lin L, Lu Q, Melendez A, O’Rourke EJ, Sato K, Sato M, Wang X, Wu F (2015) Guidelines for monitoring autophagy in C. elegans. Autophagy 11(1):9–27. doi: 10.1080/15548627.2014.1003478 PubMedPubMedCentralGoogle Scholar
  12. 12.
    Klionsky DJ, Abdelmohsen K, Abe A, Abedin MJ, Abeliovich H et al (2016) Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy 12(1):1–222. doi: 10.1080/15548627.2015.1100356 PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Johansen T, Lamark T (2011) Selective autophagy mediated by autophagic adapter proteins. Autophagy 7(3):279–296, doi:14487 [pii]PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Khaminets A, Behl C, Dikic I (2016) Ubiquitin-dependent and independent signals in selective autophagy. Trends Cell Biol 26(1):6–16. doi: 10.1016/j.tcb.2015.08.010 PubMedCrossRefGoogle Scholar
  15. 15.
    Tian Y, Li Z, Hu W, Ren H, Tian E, Zhao Y, Lu Q, Huang X, Yang P, Li X, Wang X, Kovacs AL, Yu L, Zhang H (2010) C. elegans screen identifies autophagy genes specific to multicellular organisms. Cell 141(6):1042–1055. doi: 10.1016/j.cell.2010.04.034 PubMedCrossRefGoogle Scholar
  16. 16.
    Palikaras K, Lionaki E, Tavernarakis N (2015) Coordination of mitophagy and mitochondrial biogenesis during ageing in C. elegans. Nature 521(7553):525–528. doi: 10.1038/nature14300 PubMedCrossRefGoogle Scholar
  17. 17.
    Zhang Y, Yan L, Zhou Z, Yang P, Tian E, Zhang K, Zhao Y, Li Z, Song B, Han J, Miao L, Zhang H (2009) SEPA-1 mediates the specific recognition and degradation of P granule components by autophagy in C. elegans. Cell 136(2):308–321. doi: 10.1016/j.cell.2008.12.022 PubMedCrossRefGoogle Scholar
  18. 18.
    Chen Y, Yu L (2012) Autophagic lysosome reformation. Exp Cell Res 319(2):142–146. doi:S0014-4827(12)00396-5 [pii] 10.1016/j.yexcr.2012.09.004Google Scholar
  19. 19.
    Russell RC, Yuan HX, Guan KL (2014) Autophagy regulation by nutrient signaling. Cell Res 24(1):42–57. doi: 10.1038/cr.2013.166 PubMedCrossRefGoogle Scholar
  20. 20.
    Lapierre LR, Kumsta C, Sandri M, Ballabio A, Hansen M (2015) Transcriptional and epigenetic regulation of autophagy in aging. Autophagy 11(6):867–880. doi: 10.1080/15548627.2015.1034410 PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Alers S, Loffler AS, Wesselborg S, Stork B (2011) Role of AMPK-mTOR-Ulk1/2 in the regulation of autophagy: cross talk, shortcuts, and feedbacks. Mol Cell Biol 32(1):2–11. doi:MCB.06159-11 [pii] 10.1128/MCB.06159-11Google Scholar
  22. 22.
    Kapahi P, Chen D, Rogers AN, Katewa SD, Li PW, Thomas EL, Kockel L (2010) With TOR, less is more: a key role for the conserved nutrient-sensing TOR pathway in aging. Cell Metab 11(6):453–465. doi: 10.1016/j.cmet.2010.05.001 PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Apfeld J, O’Connor G, McDonagh T, DiStefano PS, Curtis R (2004) The AMP-activated protein kinase AAK-2 links energy levels and insulin-like signals to lifespan in C. elegans. Genes Dev 18(24):3004–3009PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Mair W, Morantte I, Rodrigues AP, Manning G, Montminy M, Shaw RJ, Dillin A (2011) Lifespan extension induced by AMPK and calcineurin is mediated by CRTC-1 and CREB. Nature 470(7334):404–408. doi: 10.1038/nature09706 PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Ulgherait M, Rana A, Rera M, Graniel J, Walker DW (2014) AMPK modulates tissue and organismal aging in a non-cell-autonomous manner. Cell Rep 8(6):1767–1780. doi: 10.1016/j.celrep.2014.08.006 PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Stenesen D, Suh JM, Seo J, Yu K, Lee KS, Kim JS, Min KJ, Graff JM (2013) Adenosine nucleotide biosynthesis and AMPK regulate adult life span and mediate the longevity benefit of caloric restriction in flies. Cell Metab 17(1):101–112. doi: 10.1016/j.cmet.2012.12.006 PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Gelino S, Hansen M (2012) Autophagy – an emerging anti-aging mechanism. J Clin Exp Pathol Suppl 4:pii: 006Google Scholar
  28. 28.
    Jia K, Levine B (2007) Autophagy is required for dietary restriction-mediated life span extension in C. elegans. Autophagy 3(6):597–599PubMedCrossRefGoogle Scholar
  29. 29.
    Hansen M, Chandra A, Mitic LL, Onken B, Driscoll M, Kenyon C (2008) A role for autophagy in the extension of lifespan by dietary restriction in C. elegans. PLoS Genet 4(2):e24. doi: 10.1371/journal.pgen.0040024 PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Tavernarakis N, Pasparaki A, Tasdemir E, Maiuri MC, Kroemer G (2008) The effects of p53 on whole organism longevity are mediated by autophagy. Autophagy 4(7):870–873PubMedCrossRefGoogle Scholar
  31. 31.
    Lapierre LR, Gelino S, Melendez A, Hansen M (2011) Autophagy and lipid metabolism coordinately modulate life span in germline-less C. elegans. Curr Biol 21(18):1507–1514. doi: 10.1016/j.cub.2011.07.042 PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Hashimoto Y, Ookuma S, Nishida E (2009) Lifespan extension by suppression of autophagy genes in C. elegans. Genes Cells 14(6):717–726. doi: 10.1111/j.1365-2443.2009.01306.x PubMedCrossRefGoogle Scholar
  33. 33.
    Kenyon CJ (2010) The genetics of ageing. Nature 464(7288):504–512. doi: 10.1038/nature08980 PubMedCrossRefGoogle Scholar
  34. 34.
    Kenyon C, Chang J, Gensch E, Rudner A, Tabtiang R (1993) A C. elegans mutant that lives twice as long as wild type. Nature 366(6454):461–464PubMedCrossRefGoogle Scholar
  35. 35.
    Melendez A, Talloczy Z, Seaman M, Eskelinen EL, Hall DH, Levine B (2003) Autophagy genes are essential for dauer development and life-span extension in C. elegans. Science 301(5638):1387–1391PubMedCrossRefGoogle Scholar
  36. 36.
    Hars ES, Qi H, Ryazanov AG, Jin S, Cai L, Hu C, Liu LF (2007) Autophagy regulates ageing in C. elegans. Autophagy 3(2):93–95PubMedCrossRefGoogle Scholar
  37. 37.
    Egan DF, Shackelford DB, Mihaylova MM, Gelino S, Kohnz RA, Mair W, Vasquez DS, Joshi A, Gwinn DM, Taylor R, Asara JM, Fitzpatrick J, Dillin A, Viollet B, Kundu M, Hansen M, Shaw RJ (2011) Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science 331(6016):456–461. doi: 10.1126/science.1196371 PubMedCrossRefGoogle Scholar
  38. 38.
    Lapierre LR, De Magalhaes Filho CD, McQuary PR, Chu CC, Visvikis O, Chang JT, Gelino S, Ong B, Davis AE, Irazoqui JE, Dillin A, Hansen M (2013) The TFEB orthologue HLH-30 regulates autophagy and modulates longevity in C. elegans. Nat Commun 4:2267. doi: 10.1038/ncomms3267 PubMedGoogle Scholar
  39. 39.
    Laplante M, Sabatini DM (2012) mTOR signaling in growth control and disease. Cell 149(2):274–293. doi: 10.1016/j.cell.2012.03.017 PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Vellai T, Takacs-Vellai K, Zhang Y, Kovacs AL, Orosz L, Muller F (2003) Genetics: influence of TOR kinase on lifespan in C. elegans. Nature 426(6967):620. doi: 10.1038/426620a PubMedCrossRefGoogle Scholar
  41. 41.
    Depuydt G, Shanmugam N, Rasulova M, Dhondt I, Braeckman BP (2016) Increased protein stability and decreased protein turnover in the C. elegans Ins/IGF-1 daf-2 mutant. J Gerontol A Biol Sci Med Sci. doi: 10.1093/gerona/glv221 PubMedPubMedCentralGoogle Scholar
  42. 42.
    Mair W, Dillin A (2008) Aging and survival: the genetics of life span extension by dietary restriction. Annu Rev Biochem 77:727–754. doi: 10.1146/annurev.biochem.77.061206.171059 PubMedCrossRefGoogle Scholar
  43. 43.
    Greer EL, Brunet A (2009) Different dietary restriction regimens extend lifespan by both independent and overlapping genetic pathways in C. elegans. Aging Cell 8(2):113–127PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Lakowski B, Hekimi S (1998) The genetics of caloric restriction in C. elegans. Proc Natl Acad Sci U S A 95(22):13091–13096PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Gomez-Amaro RL, Valentine ER, Carretero M, LeBoeuf SE, Rangaraju S, Broaddus CD, Solis GM, Williamson JR, Petrascheck M (2015) Measuring food intake and nutrient absorption in C. elegans. Genetics. doi: 10.1534/genetics.115.175851 PubMedPubMedCentralGoogle Scholar
  46. 46.
    Toth ML, Sigmond T, Borsos E, Barna J, Erdelyi P, Takacs-Vellai K, Orosz L, Kovacs AL, Csikos G, Sass M, Vellai T (2008) Longevity pathways converge on autophagy genes to regulate life span in C. elegans. Autophagy 4(3):330–338PubMedCrossRefGoogle Scholar
  47. 47.
    Morck C, Pilon M (2007) Caloric restriction and autophagy in C. elegans. Autophagy 3(1):51–53PubMedCrossRefGoogle Scholar
  48. 48.
    Morselli E, Maiuri MC, Markaki M, Megalou E, Pasparaki A, Palikaras K, Criollo A, Galluzzi L, Malik SA, Vitale I, Michaud M, Madeo F, Tavernarakis N, Kroemer G (2010) Caloric restriction and resveratrol promote longevity through the sirtuin-1-dependent induction of autophagy. Cell Death Dis 1:e10. doi: 10.1038/cddis.2009.8 PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Heestand BN, Shen Y, Liu W, Magner DB, Storm N, Meharg C, Habermann B, Antebi A (2013) Dietary restriction induced longevity is mediated by nuclear receptor NHR-62 in C. elegans. PLoS Genet 9(7):e1003651. doi: 10.1371/journal.pgen.1003651 PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Panowski SH, Wolff S, Aguilaniu H, Durieux J, Dillin A (2007) PHA-4/Foxa mediates diet-restriction-induced longevity of C. elegans. Nature 447(7144):550–555PubMedCrossRefGoogle Scholar
  51. 51.
    Pandit A, Jain V, Kumar N, Mukhopadhyay A (2014) PHA-4/FOXA-regulated microRNA feed forward loops during C. elegans dietary restriction. Aging 6(10):835–855PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    O’Rourke EJ, Kuballa P, Xavier R, Ruvkun G (2013) Omega-6 polyunsaturated fatty acids extend life span through the activation of autophagy. Genes Dev 27(4):429–440. doi: 10.1101/gad.205294.112 PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Hansen M, Taubert S, Crawford D, Libina N, Lee SJ, Kenyon C (2007) Lifespan extension by conditions that inhibit translation in C. elegans. Aging Cell 6(1):95–110PubMedCrossRefGoogle Scholar
  54. 54.
    Robida-Stubbs S, Glover-Cutter K, Lamming DW, Mizunuma M, Narasimhan SD, Neumann-Haefelin E, Sabatini DM, Blackwell TK (2012) TOR signaling and rapamycin influence longevity by regulating SKN-1/Nrf and DAF-16/FoxO. Cell Metab 15(5):713–724. doi: 10.1016/j.cmet.2012.04.007 PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    McQuary PR, Liao CY, Chang JT, Kumsta C, She X, Davis A, Chu CC, Gelino S, Gomez-Amaro RL, Petrascheck M, Brill LM, Ladiges WC, Kennedy BK, Hansen M (2016) C. elegans S6K mutants require a creatine-kinase-like effector for lifespan extension. Cell Rep 14(9):2059–2067. doi: 10.1016/j.celrep.2016.02.012 PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Hansen M, Flatt T, Aguilaniu H (2013) Reproduction, fat metabolism, and life span: what is the connection? Cell Metab 17(1):10–19. doi: 10.1016/j.cmet.2012.12.003 PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Wang MC, O'Rourke EJ, Ruvkun G (2008) Fat metabolism links germline stem cells and longevity in C. elegans. Science 322(5903):957–960. doi:322/5903/957 [pii] 10.1126/science.1162011Google Scholar
  58. 58.
    Folick A, Oakley HD, Yu Y, Armstrong EH, Kumari M, Sanor L, Moore DD, Ortlund EA, Zechner R, Wang MC (2015) Aging. Lysosomal signaling molecules regulate longevity in C. elegans. Science 347(6217):83–86. doi: 10.1126/science.1258857 PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Lapierre LR, Silvestrini MJ, Nunez L, Ames K, Wong S, Le TT, Hansen M, Melendez A (2013) Autophagy genes are required for normal lipid levels in C. elegans. Autophagy 9(3):278–286. doi: 10.4161/auto.22930 PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    O’Rourke EJ, Ruvkun G (2013) MXL-3 and HLH-30 transcriptionally link lipolysis and autophagy to nutrient availability. Nat Cell Biol 15(6):668–676. doi: 10.1038/ncb2741 PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Seah NE, de Magalhaes Filho CD, Petrashen AP, Henderson HR, Laguer J, Gonzalez J, Dillin A, Hansen M, Lapierre LR (2016) Autophagy-mediated longevity is modulated by lipoprotein biogenesis. Autophagy 12(2):261–272. doi: 10.1080/15548627.2015.1127464 PubMedCrossRefGoogle Scholar
  62. 62.
    Durieux J, Dillin A (2007) Mitochondria and aging: dilution is the solution. Cell Metab 6(6):427–429. doi: 10.1016/j.cmet.2007.11.008 PubMedCrossRefGoogle Scholar
  63. 63.
    Ewbank JJ, Barnes TM, Lakowski B, Lussier M, Bussey H, Hekimi S (1997) Structural and functional conservation of the C. elegans timing gene clk-1. Science 275(5302):980–983PubMedCrossRefGoogle Scholar
  64. 64.
    Feng J, Bussiere F, Hekimi S (2001) Mitochondrial electron transport is a key determinant of life span in C. elegans. Dev Cell 1(5):633–644PubMedCrossRefGoogle Scholar
  65. 65.
    Yang W, Hekimi S (2010) Two modes of mitochondrial dysfunction lead independently to lifespan extension in C. elegans. Aging Cell 9(3):433–447. doi: 10.1111/j.1474-9726.2010.00571.x PubMedCrossRefGoogle Scholar
  66. 66.
    Schiavi A, Torgovnick A, Kell A, Megalou E, Castelein N, Guccini I, Marzocchella L, Gelino S, Hansen M, Malisan F, Condo I, Bei R, Rea SL, Braeckman BP, Tavernarakis N, Testi R, Ventura N (2013) Autophagy induction extends lifespan and reduces lipid content in response to frataxin silencing in C. elegans. Exp Gerontol 48(2):191–201. doi: 10.1016/j.exger.2012.12.002 PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Schiavi A, Maglioni S, Palikaras K, Shaik A, Strappazzon F, Brinkmann V, Torgovnick A, Castelein N, De Henau S, Braeckman BP, Cecconi F, Tavernarakis N, Ventura N (2015) Iron-starvation-induced mitophagy mediates lifespan extension upon mitochondrial stress in C. elegans. Curr Biol 25(14):1810–1822. doi: 10.1016/j.cub.2015.05.059 PubMedCrossRefGoogle Scholar
  68. 68.
    Arum O, Johnson TE (2007) Reduced expression of the C. elegans p53 ortholog cep-1 results in increased longevity. J Gerontol 62(9):951–959CrossRefGoogle Scholar
  69. 69.
    Pietrocola F, Izzo V, Niso-Santano M, Vacchelli E, Galluzzi L, Maiuri MC, Kroemer G (2013) Regulation of autophagy by stress-responsive transcription factors. Semin Cancer Biol 23(5):310–322. doi: 10.1016/j.semcancer.2013.05.008 PubMedCrossRefGoogle Scholar
  70. 70.
    Tissenbaum HA, Guarente L (2001) Increased dosage of a sir-2 gene extends lifespan in C. elegans. Nature 410(6825):227–230PubMedCrossRefGoogle Scholar
  71. 71.
    Viswanathan M, Kim SK, Berdichevsky A, Guarente L (2005) A role for SIR-2.1 regulation of ER stress response genes in determining C. elegans life span. Dev Cell 9(5):605–615. doi: 10.1016/j.devcel.2005.09.017 PubMedCrossRefGoogle Scholar
  72. 72.
    Rogina B, Helfand SL (2004) Sir2 mediates longevity in the fly through a pathway related to calorie restriction. Proc Natl Acad Sci U S A 101(45):15998–16003. doi: 10.1073/pnas.0404184101 PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Burnett C, Valentini S, Cabreiro F, Goss M, Somogyvari M, Piper MD, Hoddinott M, Sutphin GL, Leko V, McElwee JJ, Vazquez-Manrique RP, Orfila AM, Ackerman D, Au C, Vinti G, Riesen M, Howard K, Neri C, Bedalov A, Kaeberlein M, Soti C, Partridge L, Gems D (2011) Absence of effects of Sir2 overexpression on lifespan in C. elegans and Drosophila. Nature 477(7365):482–485. doi: 10.1038/nature10296 PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Dong MQ, Venable JD, Au N, Xu T, Park SK, Cociorva D, Johnson JR, Dillin A, Yates JR 3rd (2007) Quantitative mass spectrometry identifies insulin signaling targets in C. elegans. Science 317(5838):660–663PubMedCrossRefGoogle Scholar
  75. 75.
    Dwivedi M, Song HO, Ahnn J (2009) Autophagy genes mediate the effect of calcineurin on life span in C. elegans. Autophagy 5(5):604–607PubMedCrossRefGoogle Scholar
  76. 76.
    Medina DL, Di Paola S, Peluso I, Armani A, De Stefani D, Venditti R, Montefusco S, Scotto-Rosato A, Prezioso C, Forrester A, Settembre C, Wang W, Gao Q, Xu H, Sandri M, Rizzuto R, De Matteis MA, Ballabio A (2015) Lysosomal calcium signalling regulates autophagy through calcineurin and TFEB. Nat Cell Biol 17(3):288–299. doi: 10.1038/ncb3114 PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Yang J, Chen D, He Y, Melendez A, Feng Z, Hong Q, Bai X, Li Q, Cai G, Wang J, Chen X (2013) MiR-34 modulates C. elegans lifespan via repressing the autophagy gene atg9. Age (Dordr) 35(1):11–22. doi: 10.1007/s11357-011-9324-3 CrossRefGoogle Scholar
  78. 78.
    Mosbech MB, Kruse R, Harvald EB, Olsen AS, Gallego SF, Hannibal-Bach HK, Ejsing CS, Faergeman NJ (2013) Functional loss of two ceramide synthases elicits autophagy-dependent lifespan extension in C. elegans. PLoS ONE 8(7):e70087. doi: 10.1371/journal.pone.0070087 PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Denzel MS, Storm NJ, Gutschmidt A, Baddi R, Hinze Y, Jarosch E, Sommer T, Hoppe T, Antebi A (2014) Hexosamine pathway metabolites enhance protein quality control and prolong life. Cell 156(6):1167–1178. doi: 10.1016/j.cell.2014.01.061 PubMedCrossRefGoogle Scholar
  80. 80.
    Shintani T, Yamazaki F, Katoh T, Umekawa M, Matahira Y, Hori S, Kakizuka A, Totani K, Yamamoto K, Ashida H (2010) Glucosamine induces autophagy via an mTOR-independent pathway. Biochem Biophys Res Commun 391(4):1775–1779. doi: 10.1016/j.bbrc.2009.12.154 PubMedCrossRefGoogle Scholar
  81. 81.
    Carames B, Kiosses WB, Akasaki Y, Brinson DC, Eap W, Koziol J, Lotz MK (2013) Glucosamine activates autophagy in vitro and in vivo. Arthritis Rheum 65(7):1843–1852. doi: 10.1002/art.37977 PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Eisenberg T, Knauer H, Schauer A, Buttner S, Ruckenstuhl C, Carmona-Gutierrez D, Ring J, Schroeder S, Magnes C, Antonacci L, Fussi H, Deszcz L, Hartl R, Schraml E, Criollo A, Megalou E, Weiskopf D, Laun P, Heeren G, Breitenbach M, Grubeck-Loebenstein B, Herker E, Fahrenkrog B, Frohlich KU, Sinner F, Tavernarakis N, Minois N, Kroemer G, Madeo F (2009) Induction of autophagy by spermidine promotes longevity. Nat Cell Biol 11(11):1305–1314. doi: 10.1038/ncb1975 PubMedCrossRefGoogle Scholar
  83. 83.
    Morselli E, Marino G, Bennetzen MV, Eisenberg T, Megalou E, Schroeder S, Cabrera S, Benit P, Rustin P, Criollo A, Kepp O, Galluzzi L, Shen S, Malik SA, Maiuri MC, Horio Y, Lopez-Otin C, Andersen JS, Tavernarakis N, Madeo F, Kroemer G (2011) Spermidine and resveratrol induce autophagy by distinct pathways converging on the acetylproteome. J Cell Biol 192(4):615–629. doi: 10.1083/jcb.201008167 PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Gupta VK, Scheunemann L, Eisenberg T, Mertel S, Bhukel A, Koemans TS, Kramer JM, Liu KS, Schroeder S, Stunnenberg HG, Sinner F, Magnes C, Pieber TR, Dipt S, Fiala A, Schenck A, Schwaerzel M, Madeo F, Sigrist SJ (2013) Restoring polyamines protects from age-induced memory impairment in an autophagy-dependent manner. Nat Neurosci 16(10):1453–1460. doi: 10.1038/nn.3512 PubMedCrossRefGoogle Scholar
  85. 85.
    Park S, Mori R, Shimokawa I (2013) Do sirtuins promote mammalian longevity? A critical review on its relevance to the longevity effect induced by calorie restriction. Mol Cells 35(6):474–480. doi: 10.1007/s10059-013-0130-x PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Pyo JO, Yoo SM, Ahn HH, Nah J, Hong SH, Kam TI, Jung S, Jung YK (2013) Overexpression of Atg5 in mice activates autophagy and extends lifespan. Nat Commun 4:2300. doi:ncomms3300 [pii] 10.1038/ncomms3300Google Scholar
  87. 87.
    Simonsen A, Cumming RC, Brech A, Isakson P, Schubert DR, Finley KD (2008) Promoting basal levels of autophagy in the nervous system enhances longevity and oxidant resistance in adult Drosophila. Autophagy 4(2):176–184, doi:5269 [pii]PubMedCrossRefGoogle Scholar
  88. 88.
    Bai H, Kang P, Hernandez AM, Tatar M (2013) Activin signaling targeted by insulin/dFOXO regulates aging and muscle proteostasis in Drosophila. PLoS Genet 9(11):e1003941. doi: 10.1371/journal.pgen.1003941 PGENETICS-D-13-01286 [pii]PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Demontis F, Perrimon N (2010) FOXO/4E-BP signaling in Drosophila muscles regulates organism-wide proteostasis during aging. Cell 143(5):813–825. doi: 10.1016/j.cell.2010.10.007 PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Ling D, Salvaterra PM (2009) A central role for autophagy in Alzheimer-type neurodegeneration. Autophagy 5(5):738–740, doi:8626 [pii]PubMedCrossRefGoogle Scholar
  91. 91.
    Cuervo AM, Dice JF (2000) Age-related decline in chaperone-mediated autophagy. J Biol Chem 275(40):31505–31513. doi: 10.1074/jbc.M002102200 M002102200 [pii]PubMedCrossRefGoogle Scholar
  92. 92.
    Vittorini S, Paradiso C, Donati A, Cavallini G, Masini M, Gori Z, Pollera M, Bergamini E (1999) The age-related accumulation of protein carbonyl in rat liver correlates with the age-related decline in liver proteolytic activities. J Gerontol A Biol Sci Med Sci 54(8):B318–B323PubMedCrossRefGoogle Scholar
  93. 93.
    Ye W, Xu K, Huang D, Liang A, Peng Y, Zhu W, Li C (2011) Age-related increases of macroautophagy and chaperone-mediated autophagy in rat nucleus pulposus. Connect Tissue Res 52(6):472–478. doi: 10.3109/03008207.2011.564336 PubMedCrossRefGoogle Scholar
  94. 94.
    Kaushik S, Arias E, Kwon H, Lopez NM, Athonvarangkul D, Sahu S, Schwartz GJ, Pessin JE, Singh R (2012) Loss of autophagy in hypothalamic POMC neurons impairs lipolysis. EMBO Rep 13(3):258–265. doi: 10.1038/embor.2011.260 PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Sarkis GJ, Ashcom JD, Hawdon JM, Jacobson LA (1988) Decline in protease activities with age in the nematode C. elegans. Mech Ageing Dev 45(3):191–201PubMedCrossRefGoogle Scholar
  96. 96.
    Del Roso A, Vittorini S, Cavallini G, Donati A, Gori Z, Masini M, Pollera M, Bergamini E (2003) Ageing-related changes in the in vivo function of rat liver macroautophagy and proteolysis. Exp Gerontol 38(5):519–527PubMedCrossRefGoogle Scholar
  97. 97.
    Donati A, Cavallini G, Paradiso C, Vittorini S, Pollera M, Gori Z, Bergamini E (2001) Age-related changes in the regulation of autophagic proteolysis in rat isolated hepatocytes. J Gerontol A Biol Sci Med Sci 56(7):B288–B293PubMedCrossRefGoogle Scholar
  98. 98.
    Cavallini G, Donati A, Gori Z, Pollera M, Bergamini E (2001) The protection of rat liver autophagic proteolysis from the age-related decline co-varies with the duration of anti-ageing food restriction. Exp Gerontol 36(3):497–506PubMedCrossRefGoogle Scholar
  99. 99.
    Donati A, Cavallini G, Paradiso C, Vittorini S, Pollera M, Gori Z, Bergamini E (2001) Age-related changes in the autophagic proteolysis of rat isolated liver cells: effects of antiaging dietary restrictions. J Gerontol A Biol Sci Med Sci 56(9):B375–B383PubMedCrossRefGoogle Scholar
  100. 100.
    Chapin HC, Okada M, Merz AJ, Miller DL (2015) Tissue-specific autophagy responses to aging and stress in C. elegans. Aging 7(6):419–434PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Saha S, Ash PE, Gowda V, Liu L, Shirihai O, Wolozin B (2015) Mutations in LRRK2 potentiate age-related impairment of autophagic flux. Mol Neurodegener 10:26. doi: 10.1186/s13024-015-0022-y PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Wilkinson DS, Jariwala JS, Anderson E, Mitra K, Meisenhelder J, Chang JT, Ideker T, Hunter T, Nizet V, Dillin A, Hansen M (2015) Phosphorylation of LC3 by the Hippo kinases STK3/STK4 is essential for autophagy. Mol Cell 57(1):55–68. doi: 10.1016/j.molcel.2014.11.019 PubMedCrossRefGoogle Scholar
  103. 103.
    Lehtinen MK, Yuan Z, Boag PR, Yang Y, Villen J, Becker EB, DiBacco S, de la Iglesia N, Gygi S, Blackwell TK, Bonni A (2006) A conserved MST-FOXO signaling pathway mediates oxidative-stress responses and extends life span. Cell 125(5):987–1001. doi: 10.1016/j.cell.2006.03.046 PubMedCrossRefGoogle Scholar
  104. 104.
    Altintas O, Park S, Song HK (2016) The role of insulin/IGF-1 signaling in the longevity of model invertebrates, C. elegans and D. melanogaster. BMB Rep 49(2):81–92PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Rera M, Azizi MJ, Walker DW (2013) Organ-specific mediation of lifespan extension: more than a gut feeling? Ageing Res Rev 12(1):436–444. doi: 10.1016/j.arr.2012.05.003 PubMedCrossRefGoogle Scholar
  106. 106.
    Kaletsky R, Lakhina V, Arey R, Williams A, Landis J, Ashraf J, Murphy CT (2016) The C. elegans adult neuronal IIS/FOXO transcriptome reveals adult phenotype regulators. Nature 529(7584):92–96. doi: 10.1038/nature16483 PubMedCrossRefGoogle Scholar
  107. 107.
    Dillin A, Crawford DK, Kenyon C (2002) Timing requirements for insulin/IGF-1 signaling in C. elegans. Science 298(5594):830–834PubMedCrossRefGoogle Scholar
  108. 108.
    Visvikis O, Ihuegbu N, Labed SA, Luhachack LG, Alves AM, Wollenberg AC, Stuart LM, Stormo GD, Irazoqui JE (2014) Innate host defense requires TFEB-mediated transcription of cytoprotective and antimicrobial genes. Immunity 40(6):896–909. doi: 10.1016/j.immuni.2014.05.002 PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Lin L, Yang P, Huang X, Zhang H, Lu Q, Zhang H (2013) The scaffold protein EPG-7 links cargo-receptor complexes with the autophagic assembly machinery. J Cell Biol 201(1):113–129. doi: 10.1083/jcb.201209098 PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    McColl G, Rogers AN, Alavez S, Hubbard AE, Melov S, Link CD, Bush AI, Kapahi P, Lithgow GJ (2010) Insulin-like signaling determines survival during stress via posttranscriptional mechanisms in C. elegans. Cell Metab 12(3):260–272. doi: 10.1016/j.cmet.2010.08.004 PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Pan KZ, Palter JE, Rogers AN, Olsen A, Chen D, Lithgow GJ, Kapahi P (2007) Inhibition of mRNA translation extends lifespan in C. elegans. Aging Cell 6(1):111–119. doi:ACE266 [pii] 10.1111/j.1474-9726.2006.00266.xGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Program for Development, Aging and RegenerationSanford Burnham Prebys Medical Discovery InstituteLa JollaUSA

Personalised recommendations