Fast Similarity Search in Scalar Fields using Merging Histograms

Conference paper
Part of the Mathematics and Visualization book series (MATHVISUAL)


Similarity estimation in scalar fields using level set topology has attracted a lot of attention in the recent past. Most existing techniques match parts of contour or merge trees against each other by estimating a best overlap between them. Due to their combinatorial nature, these methods can be computationally expensive or prone to instabilities. In this paper, we use an inexpensive feature descriptor to compare subtrees of merge trees against each other. It is the data histogram of the voxels encompassed by a subtree. A small modification of the merge tree computation algorithm allows for obtaining these histograms very efficiently. Furthermore, the descriptor is robust against instabilities in the merge tree. The method is useful in an interactive environment, where a user can search for all structures similar to an interactively selected one. Our method is conservative in the sense that it finds all similar structures, with the rare occurrence of some false positives. We show with several examples the effectiveness, efficiency and accuracy of our method.


Scalar Field Feature Descriptor Extremum Graph Symmetric Arrangement Reeb Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Beketayev, K., Yeliussizov, D., Morozov, D., Weber, G.H., Hamann, B.: Measuring the distance between merge trees. In: Topological Methods in Data Analysis and Visualization III, pp. 151–165. Springer, Berlin (2014)Google Scholar
  2. 2.
    Carr, H., Snoeyink, J., Axen, U.: Computing contour trees in all dimensions. In: Proceedings ACM-SIAM Symposium on Discrete Algorithms, SODA ’00, pp. 918–926. Society for Industrial and Applied Mathematics, Philadelphia (2000)Google Scholar
  3. 3.
    Carr, H., Snoeyink, J., van de Panne, M.: Simplifying flexible isosurfaces using local geometric measures. In: Proceedings IEEE Visualization, pp. 497–504. IEEE Computer Society (2004)Google Scholar
  4. 4.
    Carr, H., Brian, D., Brian, D.: On histograms and isosurface statistics. IEEE Trans. Vis. Comput. Graph. 12(5), 1259–1266 (2006)CrossRefGoogle Scholar
  5. 5.
    Correa, C., Lindstrom, P., Bremer, P.T.: Topological spines: a structure-preserving visual representation of scalar fields. IEEE Trans. Vis. Comput. Graph. 17(12), 1842–1851 (2011)CrossRefGoogle Scholar
  6. 6.
    Doraiswamy, H., Natarajan, V.: Efficient algorithms for computing Reeb graphs. Comput. Geom. 42(6–7), 606–616 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Günther, D., Reininghaus, J., Seidel, H.P., Weinkauf, T.: Notes on the simplification of the Morse-Smale complex. In: Topological Methods in Data Analysis and Visualization III, pp. 135–150. Springer, Berlin (2014)Google Scholar
  8. 8.
    Ioannidis, Y.: The history of histograms (abridged). In: Proceedings International Conference on Very Large Data Bases (VLDB), vol. 29, pp. 19–30. VLDB Endowment (2003)Google Scholar
  9. 9.
    Kindlmann, G.L.: Semi-automatic generation of transfer functions for direct volume rendering. In: Proceedings IEEE Symposium on Volume Visualization, pp. 79–86 (1998)Google Scholar
  10. 10.
    Lundström, C., Ljung, P., Ynnerman, A.: Local histograms for design of transfer functions in direct volume rendering. IEEE Trans. Vis. Comput. Graph. 12(6), 1570–1579 (2006)CrossRefGoogle Scholar
  11. 11.
    Rubner, Y., Tomasi, C., Guibas, L.J.: A metric for distributions with applications to image databases. In: Proceedings International Conference on Computer Vision, pp. 59–66. IEEE (1998)Google Scholar
  12. 12.
    Saikia, H., Seidel, H.P., Weinkauf, T.: Extended branch decomposition graphs: structural comparison of scalar data. Comput. Graph. Forum 33(3), 41–50 (2014)CrossRefGoogle Scholar
  13. 13.
    Scheidegger, C.E., Schreiner, J.M., Duffy, B., Carr, H., Silva, C.T.: Revisiting histograms and isosurface statistics. IEEE Trans. Vis. Comput. Graph. 14(6), 1659–1666 (2008)CrossRefGoogle Scholar
  14. 14.
    Sereda, P., Vilanova Bartroli, A., Serlie, I.W.O., Gerritsen, F.A.: Visualization of boundaries in volumetric data sets using LH histograms. IEEE Trans. Vis. Comput. Graph. 12, 208–218 (2006)CrossRefGoogle Scholar
  15. 15.
    Tarasov, S.P., Vyalyi, M.N.: Construction of contour trees in 3D in O(n log n) steps. In: Proceedings Annual Symposium on Computational Geometry, SCG, pp. 68–75. ACM, New York (1998)Google Scholar
  16. 16.
    Thomas, D.M., Natarajan, V.: Symmetry in scalar field topology. IEEE Trans. Vis. Comput. Graph. 17(12), 2035–2044 (2011)CrossRefGoogle Scholar
  17. 17.
    Thomas, D.M., Natarajan, V.: Detecting symmetry in scalar fields using augmented extremum graphs. IEEE Trans. Vis. Comput. Graph. 19(12), 2663–2672 (2013)CrossRefGoogle Scholar
  18. 18.
    Thomas, D., Natarajan, V.: Multiscale symmetry detection in scalar fields by clustering contours. IEEE Trans. Vis. Comput. Graph. 20(12), 2427–2436 (2014)CrossRefGoogle Scholar
  19. 19.
    Tung, T., Schmitt, F.: Augmented Reeb graphs for content-based retrieval of 3D mesh models. In: Proceedings Shape Modeling Applications, pp. 157–166. IEEE (2004)Google Scholar
  20. 20.
    Younesy, H., Möller, T., Carr, H.: Visualization of time-varying volumetric data using differential time-histogram table. In: Proceedings International Workshop on Volume Graphics, pp. 21–224. IEEE (2005)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.KTH Royal Institute of TechnologyStockholmSweden
  2. 2.MPI InformatikSaarbrückenGermany

Personalised recommendations