Skip to main content

Agreement Analysis of Quality Measures for Dimensionality Reduction

Part of the Mathematics and Visualization book series (MATHVISUAL)

Abstract

High-dimensional data sets commonly occur in various application domains. They are often analysed using dimensionality reduction methods, such as principal component analysis or multidimensional scaling. To determine the reliability of a particular embedding of a data set, users need to analyse its quality. For this purpose, the literature knows numerous quality measures. Most of these measures concentrate on a single aspect, such as the preservation of relative distances, while others aim to balance multiple aspects, such as intrusions and extrusions in k-neighbourhoods. Faced with multiple quality measures with different ranges and different value distributions, it is challenging to decide which aspects of a data set are preserved best by an embedding. We propose an algorithm based on persistent homology that permits the comparative analysis of different quality measures on a given embedding, regardless of their ranges. Our method ranks quality measures and provides local feedback about which aspects of a data set are preserved by an embedding in certain areas. We demonstrate the use of our technique by analysing quality measures on different embeddings of synthetic and real-world data sets.

Keywords

  • Scalar Field
  • Quality Measure
  • Jaccard Index
  • Dimensionality Reduction Method
  • Handwritten Digit

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bertini, E., Tatu, A., Keim, D.: Quality metrics in high-dimensional data visualization: an overview and systematization. IEEE Trans. Vis. Comput. Graph. 17(12), 2203–2212 (2011)

    CrossRef  Google Scholar 

  2. Carr, H., Snoeyink, J., Axen, U.: Computing contour trees in all dimensions. Comput. Geom. 24(2), 75–94 (2003)

    CrossRef  MathSciNet  MATH  Google Scholar 

  3. Chazal, F., Guibas, L.J., Oudot, S.Y., Skraba, P.: Persistence-based clustering in Riemannian manifolds. J. ACM 60(6), 41:1–41:38 (2013)

    Google Scholar 

  4. Cheng, Y.: Mean shift, mode seeking, and clustering. IEEE Trans. Pattern Anal. Mach. Intell. 17(8), 790–799 (1995)

    CrossRef  Google Scholar 

  5. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 3rd edn. MIT Press, Cambridge (2009)

    MATH  Google Scholar 

  6. Correa, C., Lindstrom, P.: Towards robust topology of sparsely sampled data. IEEE Trans. Vis. Comput. Graph. 17(12), 1852–1861 (2011)

    CrossRef  Google Scholar 

  7. Correa, C., Lindstrom, P., Bremer, P.T.: Topological spines: a structure-preserving visual representation of scalar fields. IEEE Trans. Vis. Comput. Graph. 17(12), 1842–1851 (2011)

    CrossRef  Google Scholar 

  8. Doraiswamy, H., Shivashankar, N., Natarajan, V., Wang, Y.: Topological saliency. Comput. Graph. 37(7), 787–799 (2013)

    CrossRef  Google Scholar 

  9. Edelsbrunner, H., Harer, J.: Computational Topology: An Introduction. American Mathematical Society, Providence, RI (2010)

    MATH  Google Scholar 

  10. Gerber, S., Bremer, P.T., Pascucci, V., Whitaker, R.: Visual exploration of high dimensional scalar functions. IEEE Trans. Vis. Comput. Graph. 16(6), 1271–1280 (2010)

    CrossRef  Google Scholar 

  11. Lee, J.A., Verleysen, M.: Quality assessment of dimensionality reduction: rank-based criteria. Neurocomputing 72(7–9), 1431–1443 (2009)

    CrossRef  Google Scholar 

  12. Lee, J.H., McDonnell, K.T., Zelenyuk, A., Imre, D., Mueller, K.: A structure-based distance metric for high-dimensional space exploration with multidimensional scaling. IEEE Trans. Vis. Comput. Graph. 20(3), 351–364 (2014)

    CrossRef  Google Scholar 

  13. Lichman, M.: UCI machine learning repository (2013). http://archive.ics.uci.edu/ml

    Google Scholar 

  14. Oesterling, P., Heine, C., Jänicke, H., Scheuermann, G., Heyer, G.: Visualization of high-dimensional point clouds using their density distribution’s topology. IEEE Trans. Vis. Comput. Graph. 17(11), 1547–1559 (2011)

    CrossRef  Google Scholar 

  15. Oesterling, P., Heine, C., Weber, G.H., Scheuermann, G.: Visualizing nD point clouds as topological landscape profiles to guide local data analysis. IEEE Trans. Vis. Comput. Graph. 19(3), 514–526 (2013)

    CrossRef  Google Scholar 

  16. Rieck, B., Mara, H., Leitte, H.: Multivariate data analysis using persistence-based filtering and topological signatures. IEEE Trans. Vis. Comput. Graph. 18(12), 2382–2391 (2012)

    CrossRef  Google Scholar 

  17. Sauber, N., Theisel, H., Seidel, H.P.: Multifield-graphs: an approach to visualizing correlations in multifield scalar data. IEEE Trans. Vis. Comput. Graph. 12(5), 917–924 (2006)

    CrossRef  Google Scholar 

  18. Schneider, D., Wiebel, A., Carr, H., Hlawitschka, M., Scheuermann, G.: Interactive comparison of scalar fields based on largest contours with applications to flow visualization. IEEE Trans. Vis. Comput. Graph. 14(6), 1475–1482 (2008)

    CrossRef  Google Scholar 

  19. Schneider, D., Heine, C., Carr, H., Scheuermann, G.: Interactive comparison of multifield scalar data based on largest contours. Comput. Aided Geom. Des. 30(6), 521–528 (2013)

    CrossRef  MathSciNet  MATH  Google Scholar 

  20. Tenenbaum, J.B., de Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290(5500), 2319–2323 (2000)

    CrossRef  Google Scholar 

  21. van der Maaten, L.J.P., Postma, E.O., van den Herik, H.J.: Dimensionality reduction: a comparative review. Technical Report 005, Tilburg University (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bastian Rieck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Rieck, B., Leitte, H. (2017). Agreement Analysis of Quality Measures for Dimensionality Reduction. In: Carr, H., Garth, C., Weinkauf, T. (eds) Topological Methods in Data Analysis and Visualization IV. TopoInVis 2015. Mathematics and Visualization. Springer, Cham. https://doi.org/10.1007/978-3-319-44684-4_6

Download citation