Advertisement

A Comparison of Joint Contour Nets and Pareto Sets

Conference paper
Part of the Mathematics and Visualization book series (MATHVISUAL)

Abstract

For the scientific visualization and analysis of univariate (scalar) fields several topological approaches like contour trees and Reeb graphs were studied and compared to each other some time ago. In recent years, some of those approaches were generalized to multivariate fields. Among others, data structures like the joint contour net (JCN) and the Pareto set were introduced and improved in subsequent work. However, both methods utilized individual data sets as test cases for their proof-of-concept sections and partially lacked a complete comparison to other multivariate approaches. Hence, to better understand the relationship between those two data structures and to gain insights into general multivariate topology, we present a deeper comparison of JCNs and Pareto sets in which we integrate data sets applied in the original JCN and Pareto set papers.

Keywords

Fiber Surface Outgoing Edge Critical Node Underlying Function Reeb Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Carlsson, G.E., Singh, G., Zomorodian, A.: Computing multidimensional persistence. J. Comput. Geom. 1(1), 72–100 (2010)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Carr, H., Duke, D.J.: Joint contour nets. IEEE Trans. Vis. Comput. Graph. 20(8), 1100–1113 (2014)CrossRefGoogle Scholar
  3. 3.
    Carr, H., Snoeyink, J., Axen, U.: Computing contour trees in all dimensions. Comput. Geom. 24(2), 75–94 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Carr, H., Snoeyink, J., van de Panne, M.: Flexible isosurfaces: Simplifying and displaying scalar topology using the contour tree. Comput. Geom. 43(1), 42–58 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Carr, H., Geng, Z., Tierny, J., Chattopadhyay, A., Knoll, A.: Fiber surfaces: Generalizing isosurfaces to bivariate data. Comput. Graph. Forum 34(3), 241–250 (2015)CrossRefGoogle Scholar
  6. 6.
    Chen, C.H., Härdle, W.K., Unwin, A. (eds.): Handbook of Data Visualization. Handbooks of Computational Statistics. Springer, Berlin (2008)zbMATHGoogle Scholar
  7. 7.
    Chen, G., Mischaikow, K., Laramee, R.S., Zhang, E.: Efficient Morse decompositions of vector fields. IEEE Trans. Vis. Comput. Graph. 14(4), 848–862 (2008)CrossRefGoogle Scholar
  8. 8.
    Doraiswamy, H., Natarajan, V.: Efficient algorithms for computing Reeb graphs. Comput. Geom. 42(6-7), 606–616 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Doraiswamy, H., Natarajan, V.: Computing Reeb graphs as a union of contour trees. IEEE Trans. Vis. Comput. Graph. 19(2), 249–262 (2013)CrossRefGoogle Scholar
  10. 10.
    Edelsbrunner, H., Harer, J.: Jacobi sets. In: Cucker, F., DeVore, R., Olver, P., Süli, E. (eds.) Foundations of Computational Mathematics: Minneapolis, 2002, pp. 37–57. Cambridge University Press, Cambridge (2004)CrossRefGoogle Scholar
  11. 11.
    Edelsbrunner, H., Harer, J., Patel, A.K.: Reeb spaces of piecewise linear mappings. In: Proceedings of the Twenty-fourth Annual Symposium on Computational Geometry, SCG ’08, pp. 242–250. ACM, New York (2008)Google Scholar
  12. 12.
    Forman, R.: Morse theory for cell complexes. Adv. Math. 134(1), 90–145 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Huettenberger, L., Garth, C.: A comparison of Pareto sets and Jacobi sets. In: Bennett, J., Vivodtzev, F., Pascucci, V. (eds.) Topological and Statistical Methods for Complex Data: Tackling Large-Scale, High-Dimensional, and Multivariate Data Spaces, pp. 125–141. Springer, Berlin (2015)Google Scholar
  14. 14.
    Huettenberger, L., Heine, C., Carr, H., Scheuermann, G., Garth, C.: Towards multifield scalar topology based on Pareto optimality. Comput. Graph. Forum 32(3), 341–350 (2013)CrossRefGoogle Scholar
  15. 15.
    Karmarkar, N.: A new polynomial-time algorithm for linear programming. In: Proceeding of STOC, pp. 302–311. ACM, New York (1984)Google Scholar
  16. 16.
    Kniss, J., Kindlmann, G.L., Hansen, C.D.: Interactive volume rendering using multi-dimensional transfer functions and direct manipulation widgets. In: Proceeding of IEEE Visualization, pp. 255–262. IEEE Computer Society, New York (2001)Google Scholar
  17. 17.
    Nagaraj, S., Natarajan, V., Nanjundiah, R.S.: A gradient-based comparison measure for visual analysis of multifield data. Comput. Graph. Forum 30(3), 1101–1110 (2011)CrossRefGoogle Scholar
  18. 18.
    Nixon, M.S., Aguado, A.S.: Feature Extraction and Image Processing, 2nd edn. Academic Press, New York (2008)Google Scholar
  19. 19.
    Pascucci, V., Cole-McLaughlin, K.: Parallel computation of the topology of level sets. Algorithmica 38(1), 249–268 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Sauber, N., Theisel, H., Seidel, H.: Multifield-graphs: an approach to visualizing correlations in multifield scalar data. IEEE Trans. Vis. Comput. Graph. 12(5), 917–924 (2006)CrossRefGoogle Scholar
  21. 21.
    Schneider, D., Heine, C., Carr, H., Scheuermann, G.: Interactive comparison of multifield scalar data based on largest contours. Comput. Aided Geom. Des. 30(6), 521–528 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Szymczak, A., Zhang, E.: Robust Morse decompositions of piecewise constant vector fields. IEEE Trans. Vis. Comput. Graph. 18(6), 938–951 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.University of KaiserslauternKaiserslauternGermany
  2. 2.ETH ZurichZurichSwitzerland

Personalised recommendations