Topology-Based Analysis for Multimodal Atmospheric Data of Volcano Eruptions

Conference paper
Part of the Mathematics and Visualization book series (MATHVISUAL)


Many scientific applications deal with data from a multitude of different sources, e.g., measurements, imaging and simulations. Each source provides an additional perspective on the phenomenon of interest, but also comes with specific limitations, e.g. regarding accuracy, spatial and temporal availability. Effectively combining and analyzing such multimodal and partially incomplete data of limited accuracy in an integrated way is challenging. In this work, we outline an approach for an integrated analysis and visualization of the atmospheric impact of volcano eruptions. The data sets comprise observation and imaging data from satellites as well as results from numerical particle simulations. To analyze the clouds from the volcano eruption in the spatiotemporal domain we apply topological methods. We show that topology-related extremal structures of the data support clustering and comparison. We further discuss the robustness of those methods with respect to different properties of the data and different parameter setups. Finally we outline open challenges for the effective integrated visualization using topological methods.


Topological Graph Extremum Graph Volcano Eruption Morse Decomposition Spatial Connectivity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We would like to thank Patrick Jöckel from Inst. of Atmospheric Physics—DLR for his support and explanations of the data. This work was funded by the German Federal Ministry of Education and Research under grant number 01LK1213A and by the European Union Framework Programme FP7 under grant agreement number 607177.


  1. 1.
    Bremer, P.T., Weber, G., Pascucci, V., Day, M., Bell, J.: Analyzing and tracking burning structures in lean premixed hydrogen flames. IEEE Trans. Vis. Comput. Graph. 16(2), 248–260 (2010)CrossRefGoogle Scholar
  2. 2.
    Bremer, P.T., Weber, G., Tierny, J., Pascucci, V., Day, M.S., Bell, J.B.: Interactive exploration and analysis of large-scale simulations using topology-based data segmentation. IEEE Trans. Vis. Comput. Graph. 17(9), 1307–1324 (2011)CrossRefGoogle Scholar
  3. 3.
    Carr, H., Snoeyink, J., Axen, U.: Computing contour trees in all dimensions. Comput. Geom. 24(2), 75–94 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Correa, C., Lindstrom, P., Bremer, P.T.: Topological spines: a structure-preserving visual representation of scalar fields. IEEE Trans. Vis. Comput. Graph. 17(12), 1842–1851 (2011)CrossRefGoogle Scholar
  5. 5.
    Couprie, M., Bertrand, G.: Topological gray-scale watershed transformation. In: Proceedings of SPIE. Vision Geometry VI, vol. 3168, pp. 136–146 (1997)Google Scholar
  6. 6.
    Doraiswamy, H., Natarajan, V.: Efficient algorithms for computing Reeb graphs. Comput. Geom. 42(6–7), 606–616 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Doraiswamy, H., Natarajan, V., Nanjundiah, R.S.: An exploration framework to identify and track movement of cloud systems. IEEE Trans. Vis. Comput. Graph. 19(12), 2896–2905 (2013)CrossRefGoogle Scholar
  8. 8.
    Edelsbrunner, H., Harer, J.: Jacobi sets of multiple Morse functions. In: Cucker, F., DeVore, R., Olver, P., Sueli, E. (eds.) Foundations of Computational Mathematics, Minneapolis 2002, pp. 37–57. Cambridge University Press, Cambridge (2004)CrossRefGoogle Scholar
  9. 9.
    Edelsbrunner, H., Harer, J., Zomorodian, A.: Hierarchical Morse complexes for piecewise linear 2-manifolds. In: Proceedings of 17th Symposium on Computational Geometry, pp. 70–79 (2001)Google Scholar
  10. 10.
    Edelsbrunner, H., Letscher, D., Zomorodian, A.: Topological persistence and simplification. Discret. Comput. Geom. 28(4), 511–533 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Engelke, W., Kuhn, A., Flatken, M., Chen, F., Hege, H.C., Gerndt, A., Hotz, I.: Atmospheric impact of volcano eruptions (SciVis Contest 2014). In: Proceedings of IEEE SciVis, p. 10 (2014)Google Scholar
  12. 12.
    Forman, R.: A user’s guide to discrete Morse theory. In: Proceedings of 2001 International Conference on Formal Power Series and Algebraic Combinatorics. Advances in Applied Mathematics (2001)Google Scholar
  13. 13.
    Gambheer, A.V., Bhat, S.: Life cycle characteristics of deep cloud systems over the Indian region using INSAT-1B pixel data. Mon. Weather Rev. 128, 4071–4083 (2000)CrossRefGoogle Scholar
  14. 14.
    Griessbach, S., Hoffmann, L., Spang, R., Riese, M.: Volcanic ash detection with infrared limb sounding: MIPAS observations and radiative transfer simulations. Atmos. Meas. Tech. 7(5), 1487–1507 (2014)CrossRefGoogle Scholar
  15. 15.
    Griffith, E.J., Post, F.H., Koutek, M., Heus, T., Jonker, H.J.: Feature tracking in VR for cumulus cloud life-cycle studies. In: Proceedings 11th Eurographics conference on Virtual Environments, pp. 121–128. Eurographics Association (2005)Google Scholar
  16. 16.
    Günther, D., Reininghaus, J., Wagner, H., Hotz, I.: Efficient computation of 3D Morse-Smale complexes and persistent homology using discrete Morse theory. Vis. Comput. 28(10), 959–969 (2012)CrossRefGoogle Scholar
  17. 17.
    Gyulassy, A., Natarajan, V., Pascucci, V., Hamann, B.: Efficient computation of Morse-Smale complexes for three-dimensional scalar functions. IEEE Trans. Vis. Comput. Graph. 13(6), 1440–1447 (2007)CrossRefGoogle Scholar
  18. 18.
    Hentschel, B.: 2014 IEEE SciVis Contest (2014). Google Scholar
  19. 19.
    Heus, T., Seifert, A.: Automated tracking of shallow cumulus clouds in large domain, long duration large eddy simulations. Geosci. Model Dev. 6(4), 1261–1273 (2013)CrossRefGoogle Scholar
  20. 20.
    Hoffmann, L., Griessbach, S., Meyer, C.I.: Volcanic emissions from AIRS observations: detection methods, case study, and statistical analysis. In: Proceedings of SPIE. Remote Sensing of Clouds and the Atmosphere XIX; and Optics in Atmospheric Propagation and Adaptive Systems XVII, vol. 9242, p. 924214 (2014)Google Scholar
  21. 21.
    Kober, K., Tafferner, A.: Tracking and nowcasting of convective cells using remote sensing data from radar and satellite. Meteorol. Z. 1(18), 075–084 (2009)CrossRefGoogle Scholar
  22. 22.
    Konopka, P., Grooß, J.U., Günther, G., Ploeger, F., Pommrich, R., Müller, R., Livesey, N.: Annual cycle of ozone at and above the tropical tropopause: observations versus simulations with the chemical lagrangian model of the stratosphere (CLaMS). Atmos. Chem. Phys. 10(1), 121–132 (2010)CrossRefGoogle Scholar
  23. 23.
    Laramee, R.S., Hauser, H., Zhao, L., Post, F.H.: Topology-based flow visualization, the state of the art. In: Hauser, H., Hagen, H., Theisel, H. (eds.) Topology-based methods in visualization, Mathematics and Visualization, pp. 1–19. Springer, Berlin/Heidelberg (2007)CrossRefGoogle Scholar
  24. 24.
    McKenna, D.S., Konopka, P., Grooß, J.U., Günther, G., Müller, R., Spang, R., Offermann, D., Orsolini, Y.: A new chemical lagrangian model of the stratosphere (CLaMS) 1. formulation of advection and mixing. J. Geophys. Res. Atmosp. 107(D16), ACH–15 (2002)Google Scholar
  25. 25.
    Pobitzer, A., Peikert, R., Fuchs, R., Schindler, B., Kuhn, A., Theisel, H., Matkovic, K., Hauser, H.: On the way towards topology-based visualization of unsteady flow. In: Hauser, H., Reinhard, E. (eds.) Eurographics 2010 - State of the Art Reports, pp. 137–154. The Eurographics Association (2010)Google Scholar
  26. 26.
    Reininghaus, J., Kasten, J., Weinkauf, T., Hotz, I.: Efficient computation of combinatorial feature flow fields. IEEE Trans. Vis. Comput. Graph. 18(9), 1563–1573 (2012)CrossRefGoogle Scholar
  27. 27.
    Robins, V., Wood, P., Sheppard, A.: Theory and algorithms for constructing discrete Morse complexes from grayscale digital images. IEEE Trans. Pattern Anal. Mach. Intell. 33(8), 1646–1658 (2011)CrossRefGoogle Scholar
  28. 28.
    Shivashankar, N., Natarajan, V.: Parallel computation of 3D Morse-Smale complexes. Comput. Graph. Forum 31(3), 965–974 (2012)CrossRefGoogle Scholar
  29. 29.
    Tominski, C., Donges, J., Nocke, T.: Information visualization in climate research. In: 2011 15th International Conference on Information Visualisation, pp. 298–305 (2011)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Zuse-Institute Berlin (ZIB)BerlinGermany
  2. 2.Deutsches Zentrum für Luft- und Raumfahrt (DLR)BraunschweigGermany
  3. 3.Media and Information TechnologyLinköping UniversityLinköpingSweden

Personalised recommendations