Skip to main content

Multiphase and Multicomponent Flows

  • Chapter
  • First Online:
The Lattice Boltzmann Method

Abstract

After reading this chapter, you will be able to expand lattice Boltzmann simulations by including non-ideal fluids, using either the free-energy or the Shan-Chen pseudopotential method. This will allow you to simulate fluids consisting of multiple phases (e.g. liquid water and water vapour) and multiple components (e.g. oil and water). You will also learn how the surface tension between fluid phases/components and the contact angle at solid surfaces can be varied and controlled.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This concept can easily be extended to systems with more than two components by introducing more order parameters.

  2. 2.

    In reality we cannot write ρ (1) = 0 or ρ (2) = 0 since the local density of a given component is never exactly zero. For example, in a water-oil mixture, one can always find a few water molecules in the oil-rich phase and the other way around. However, these minority densities are usually so small that we can neglect them here.

  3. 3.

    For readers unfamiliar with Gibbs and Helmholtz free energies, their descriptions can be found in most textbooks on thermodynamics, e.g. [22]. Briefly, Gibbs free energy is usually used when the system is under constant pressure and temperature, while the Helmholtz free energy is taken when the system is under constant volume and temperature.

  4. 4.

    This definition is strictly valid only for simple liquids. More generally, the energy per unit area for stretching the interface is given by Γ = γ + dγ∕dε where ε is the strain. For simple liquids we have dγ∕dε = 0 and Γ = γ.

  5. 5.

    At a given point on a surface, we can define two radii of curvature, as shown in Fig. 9.3a. The mean curvature is simply defined as the average (1∕R 1 + 1∕R 2)∕2, while the Gaussian curvature is the product 1∕(R 1 R 2). Since one of the curvature radii can be negative and the other positive (e.g. a saddle surface), the mean curvature can vanish, even for a non-planar surface.

    Fig. 9.3
    figure 3

    Schematic diagrams for (a ) the Laplace pressure and (b ) Young’s contact angle. Each point at the interface can be characterised by two independent radii of curvature that can be positive or negative. In (a ), the surface is convex and both radii are positive. The average curvature (1∕R 1 + 1∕R 2)∕2 and the surface tension γ lg are related to the pressure jump (Laplace pressure) p lp g across the interface. In (b ), a liquid droplet is in contact with a surface and forms a contact angle θ. For this angle, all surface tension force components tangential to the surface are in mechanical equilibrium

  6. 6.

    For multicomponent flows, an additional equation of motion is needed to describe the evolution of the order parameter. This is usually given by the Cahn-Hilliard or Allen-Cahn equation, see e.g. Sect. 9.2.2.3.

  7. 7.

    Thermodynamic consistency is defined in Sect. 9.1.1. See also Appendix A.7 where this is shown explicitly for the Landau multiphase model.

  8. 8.

    We note that our convention here follows that of Chap. 6 In the literature, sometimes the prefactor \(\left (1 -\frac{1} {2\tau }\right )\) is included in the definition of F i itself.

  9. 9.

    In fact, the tanh profile provides a good initial interfacial profile for most multiphase and multicomponent models.

  10. 10.

    Differences usually become visible at low densities when the density is plotted logarithmically.

  11. 11.

    We could also simulate a gas bubble in a liquid.

References

  1. A.K. Gunstensen, D.H. Rothman, S. Zaleski, G. Zanetti, Phys. Rev. A 43 (8), 4320 (1991)

    Article  ADS  Google Scholar 

  2. D. Grunau, S. Chen, K. Eggert, Phys. Fluids A 5 (10), 2557 (1993)

    Article  ADS  Google Scholar 

  3. M.M. Dupin, I. Halliday, C.M. Care, J. Phys. A: Math. Gen. 36 (31), 8517 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  4. M. Latva-Kokko, D.H. Rothman, Phys. Rev. E 71 (5), 056702 (2005)

    Article  ADS  Google Scholar 

  5. H. Liu, A.J. Valocchi, Q. Kang, Phys. Rev. E 85 (4), 046309 (2012)

    Article  ADS  Google Scholar 

  6. S. Leclaire, M. Reggio, J.Y. Trépanier, J. Comput. Phys. 246, 318 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  7. P. Asinari, Phys. Rev. E 73 (5), 056705 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  8. S. Arcidiacono, I.V. Karlin, J. Mantzaras, C.E. Frouzakis, Phys. Rev. E 76 (4), 046703 (2007)

    Article  ADS  Google Scholar 

  9. T.J. Spencer, I. Halliday, Phys. Rev. E 88 (6), 063305 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  10. J. Tölke, G.D. Prisco, Y. Mu, Comput. Math. Appl. 65 (6), 864 (2013)

    Article  MathSciNet  Google Scholar 

  11. L. Scarbolo, D. Molin, P. Perlekar, M. Sbragaglia, A. Soldati, F. Toschi, J. Comput. Phys. 234, 263 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  12. L. Chen, Q. Kang, Y. Mu, Y.L. He, W.Q. Tao, Int. J. Heat Mass Transfer 76, 210 (2014)

    Article  Google Scholar 

  13. H. Liu, Q. Kang, C.R. Leonardi, S. Schmieschek, A. Narváez, B.D. Jones, J.R. Williams, A.J. Valocchi, J. Harting, Comput. Geosci. pp. 1–29 (2015)

    Google Scholar 

  14. H. Huang, M.C. Sukop, X.Y. Lu, Multiphase Lattice Boltzmann Methods: Theory and Applications (Wiley-Blackwell, Hoboken, 2015)

    Book  Google Scholar 

  15. C.E. Brennen, Fundamentals of Multiphase Flows (Cambridge University Press, Cambridge, 2005)

    Book  MATH  Google Scholar 

  16. J. Bibette, F.L. Calderon, P. Poulin, Reports Progress Phys. 62 (6), 969 (1999)

    Article  ADS  Google Scholar 

  17. M.J. Blunt, Current Opinion Colloid Interface Sci. 6 (3), 197 (2001)

    Article  Google Scholar 

  18. A. Faghri, Y. Zhang, Transport Phenomena in Multiphase Systems (Elsevier, Amsterdam, 2006)

    Google Scholar 

  19. C.D. Han, Multiphase Flow in Polymer Processing (Academic Press, New York, 1981)

    Google Scholar 

  20. A. Gunther, K.F. Jensen, Lab Chip 6, 1487 (2006)

    Article  Google Scholar 

  21. C. Wang, P. Cheng, Int. J. Heat Mass Transfer 39 (17), 3607 (1996)

    Article  Google Scholar 

  22. S. Blundell, K.M. Blundell, Concepts in Thermal Physics (Oxford University Press, Oxford, 2006)

    MATH  Google Scholar 

  23. M. Doi, T. Ohta, J. Chem. Phys. 95 (2), 1242 (1991)

    Article  ADS  Google Scholar 

  24. T.G. Mason, Current Opinion Colloid Interface Sci. 4 (3), 231 (1999)

    Article  Google Scholar 

  25. R. Osserman, A Survey of Minimal Surfaces (Dover Publications, New York, 1986)

    MATH  Google Scholar 

  26. L.D. Landau, E.M. Lifshitz, Fluid Mechanics (Pergamon Press, Oxford, 1987)

    MATH  Google Scholar 

  27. P.G. de Gennes, F. Brochard-Wyart, D. Quéré, Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves (Springer, New York, 2004)

    Book  MATH  Google Scholar 

  28. J.S. Rowlinson, B. Widom, Molecular Theory of Capillarity (Oxford University Press, Oxford, 1989)

    Google Scholar 

  29. J.L. Barrat, L. Bocquet, Phys. Rev. Lett. 82, 4671 (1999)

    Article  ADS  Google Scholar 

  30. D.M. Huang, C. Sendner, D. Horinek, R.R. Netz, L. Bocquet, Phys. Rev. Lett. 101, 226101 (2008)

    Article  ADS  Google Scholar 

  31. A. Lafuma, Quéré, Nat. Mat. 2, 457–460 (2003)

    Google Scholar 

  32. J. Léopoldés, A. Dupuis, D.G. Bucknall, J.M. Yeomans, Langmuir 19 (23), 9818 (2003)

    Article  Google Scholar 

  33. Z. Wang, J. Yang, B. Koo, F. Stern, Int. J. Multiphase Flow 35 (3), 227 (2009)

    Article  Google Scholar 

  34. G. Tryggvason, B. Bunner, A. Esmaeeli, D. Juric, N. Al-Rawahi, W. Tauber, J. Han, S. Nas, Y.J. Jan, J. Comput. Phys. 169 (2), 708 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  35. C.S. Peskin, Acta Numerica 11, 479–517 (2002)

    Article  MathSciNet  Google Scholar 

  36. J. van der Walls, J. Stat. Phys. 20 (2), 197 (1979)

    Article  Google Scholar 

  37. D. Anderson, G. McFadden, A. Wheeler, Annu. Rev. Fluid Mech. 30, 139 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  38. J.G. Kirkwood, F.P. Buff, J. Chem. Phys. 17 (3), 338 (1949)

    Article  ADS  Google Scholar 

  39. M.R. Swift, W.R. Osborn, J.M. Yeomans, Phys. Rev. Lett. 75, 830 (1995)

    Article  ADS  Google Scholar 

  40. M.R. Swift, E. Orlandini, W.R. Osborn, J.M. Yeomans, Phys. Rev. E 54, 5041 (1996)

    Article  ADS  Google Scholar 

  41. A.J. Briant, A.J. Wagner, J.M. Yeomans, Phys. Rev. E 69, 031602 (2004)

    Article  ADS  Google Scholar 

  42. A.J. Briant, J.M. Yeomans, Phys. Rev. E 69, 031603 (2004)

    Article  ADS  Google Scholar 

  43. C. Semprebon, T. Krüger, H. Kusumaatmaja, Phys. Rev. E 93 (3), 033305 (2016)

    Article  ADS  Google Scholar 

  44. T. Lee, C.L. Lin, J. Comput. Phys. 206 (1), 16 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  45. A. Mazloomi M., S.S. Chikatamarla, I.V. Karlin, Phys. Rev. E 92 (2), 023308 (2015)

    Google Scholar 

  46. G. Gompper, S. Zschocke, Europhys. Lett. 16 (8), 731 (1991)

    Article  ADS  Google Scholar 

  47. V.M. Kendon, M.E. Cates, I. Pagonabarraga, J.C. Desplat, P. Bladon, J. Fluid Mech. 440, 147 (2001)

    Article  ADS  Google Scholar 

  48. A. Wagner, Q. Li, Physica A Stat. Mech. Appl. 362 (1), 105 (2006)

    Article  ADS  Google Scholar 

  49. T. Lee, P.F. Fischer, Phys. Rev. E 74, 046709 (2006)

    Article  ADS  Google Scholar 

  50. T. Seta, K. Okui, JFST 2 (1), 139 (2007)

    Article  ADS  Google Scholar 

  51. C.M. Pooley, K. Furtado, Phys. Rev. E 77, 046702 (2008)

    Article  ADS  Google Scholar 

  52. Z. Guo, C. Zheng, B. Shi, Phys. Rev. E 65, 46308 (2002)

    Article  ADS  Google Scholar 

  53. K. Connington, T. Lee, J. Mech. Sci. Technol. 26 (12), 3857 (2012)

    Article  Google Scholar 

  54. D. Jamet, D. Torres, J. Brackbill, J. Comput. Phys. 182 (1), 262 (2002)

    Article  ADS  Google Scholar 

  55. A.J. Wagner, Int. J. Modern Phys. B 17 (01n02), 193 (2003)

    Google Scholar 

  56. T. Inamuro, N. Konishi, F. Ogino, Comput. Phys. Commun. 129 (1), 32 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  57. D.J. Holdych, D. Rovas, J.G. Georgiadis, R.O. Buckius, Int. J. Modern Phys. C 09 (08), 1393 (1998)

    Article  ADS  Google Scholar 

  58. H. Kusumaatmaja, J. Léopoldés, A. Dupuis, J. M. Yeomans, Europhys. Lett. 73 (5), 740 (2006)

    Article  ADS  Google Scholar 

  59. J.W. Cahn, J. Chem. Phys. 66 (8), 3667 (1977)

    Article  ADS  Google Scholar 

  60. K.F. Riley, M.P. Hobson, S.J. Bence, Mathematical Methods for Physics and Engineering (3rd edition): A Comprehensive Guide (CUP, Cambridge, 2006)

    Book  MATH  Google Scholar 

  61. H. Kusumaatmaja, J.M. Yeomans, in Simulating Complex Systems by Cellular Automata, ed. by J. Kroc, P.M. Sloot, A.G. Hoekstra, Understanding Complex Systems (Springer, New York, 2010), chap. 11, pp. 241–274

    Google Scholar 

  62. A. Lamura, G. Gonnella, J.M. Yeomans, Europhys. Lett. 45 (3), 314 (1999)

    Article  ADS  Google Scholar 

  63. Q. Li, A.J. Wagner, Phys. Rev. E 76 (3), 036701 (2007)

    Article  ADS  Google Scholar 

  64. J.W. Cahn, C.M. Elliott, A. Novick-Cohen, Eur. J. Appl. Math. 7, 287 (1996)

    Article  MathSciNet  Google Scholar 

  65. J. Zhu, L.Q. Chen, J. Shen, V. Tikare, Phys. Rev. E 60, 3564 (1999)

    Article  ADS  Google Scholar 

  66. H. Kusumaatmaja, E.J. Hemingway, S.M. Fielding, J. Fluid Mech. 788, 209 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  67. J.J. Huang, C. Shu, Y.T. Chew, Phys. Fluids 21 (2) (2009)

    Google Scholar 

  68. X. Shan, H. Chen, Phys. Rev. E 47 (3), 1815 (1993)

    Article  ADS  Google Scholar 

  69. X. Shan, G. Doolen, J. Stat. Phys. 81 (1), 379 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  70. J. Zhang, F. Tian, Europhys. Lett. 81 (6), 66005 (2008)

    Article  ADS  Google Scholar 

  71. N.S. Martys, H. Chen, Phys. Rev. E 53 (1), 743 (1996)

    Article  ADS  Google Scholar 

  72. X. Shan, H. Chen, Phys. Rev. E 49 (4), 2941 (1994)

    Article  ADS  Google Scholar 

  73. M.C. Sukop, D.T. Thorne, Lattice Boltzmann Modeling: An Introduction for Geoscientists and Engineers (Springer, New York, 2006)

    Google Scholar 

  74. M. Sbragaglia, R. Benzi, L. Biferale, S. Succi, K. Sugiyama, F. Toschi, Phys. Rev. E 75 (026702), 1 (2007)

    MathSciNet  Google Scholar 

  75. M. Sbragaglia, H. Chen, X. Shan, S. Succi, Europhys. Lett. 86 (2), 24005 (2009)

    Article  ADS  Google Scholar 

  76. J. Bao, L. Schaefer, Appl. Math. Model. 37 (4), 1860 (2013)

    Article  MathSciNet  Google Scholar 

  77. D. Lycett-Brown, K.H. Luo, Phys. Rev. E 91, 023305 (2015)

    Article  ADS  Google Scholar 

  78. P. Yuan, L. Schaefer, Phys. Fluids 18 (042101), 1 (2006)

    MathSciNet  Google Scholar 

  79. A. Kuzmin, A. Mohamad, S. Succi, Int. J. Mod. Phys. C 19 (6), 875 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  80. R. Benzi, L. Biferale, M. Sbragaglia, S. Succi, F. Toschi, Phys. Rev. E 74 (2), 021509 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  81. Z. Yu, L.S. Fan, Phys. Rev. E 82 (4), 046708 (2010)

    Article  ADS  Google Scholar 

  82. X. Shan, Phys. Rev. E 81 (4), 045701 (2010)

    Article  ADS  Google Scholar 

  83. M. Sega, M. Sbragaglia, S.S. Kantorovich, A.O. Ivanov, Soft Matter 9 (42), 10092 (2013)

    Article  ADS  Google Scholar 

  84. X. Shan, G. Doolen, Phys. Rev. E 54 (4), 3614 (1996)

    Article  ADS  Google Scholar 

  85. J. Yang, E.S. Boek, Comput. Math. Appl. 65 (6), 882 (2013)

    Article  MathSciNet  Google Scholar 

  86. H. Liu, Y. Zhang, A.J. Valocchi, Phys. Fluids 27 (5), 052103 (2015)

    Article  ADS  Google Scholar 

  87. H. Huang, D.T. Thorne, M.G. Schaap, M.C. Sukop, Phys. Rev. E 76 (6), 066701 (2007)

    Article  ADS  Google Scholar 

  88. S. Chibbaro, Eur. Phys. J. E 27 (1), 99 (2008)

    Article  Google Scholar 

  89. F. Jansen, J. Harting, Phys. Rev. E 83 (4), 046707 (2011)

    Article  ADS  Google Scholar 

  90. I. Ginzburg, G. Wittum, J. Comp. Phys. 166 (2), 302 (2001)

    Article  ADS  Google Scholar 

  91. A. Kupershtokh, D. Medvedev, D. Karpov, Comput. Math. Appl. 58 (5), 965 (2009)

    Article  MathSciNet  Google Scholar 

  92. R. Benzi, M. Sbragaglia, S. Succi, M. Bernaschi, S. Chibbaro, J. Chem. Phys. 131 (10), 104903 (2009)

    Article  ADS  Google Scholar 

  93. R. Benzi, M. Bernaschi, M. Sbragaglia, S. Succi, Europhys. Lett. 91 (1), 14003 (2010)

    Article  ADS  Google Scholar 

  94. S. Chibbaro, G. Falcucci, G. Chiatti, H. Chen, X. Shan, S. Succi, Phys. Rev. E 77 (036705), 1 (2008)

    Google Scholar 

  95. Z. Guo, C. Zheng, B. Shi, Phys. Rev. E 83, 036707 (2011)

    Article  ADS  Google Scholar 

  96. D. Chiappini, G. Bella, S. Succi, F. Toschi, S. Ubertini, Commun. Comput. Phys. 7, 423 (2010)

    Google Scholar 

  97. A. Kuzmin, A. Mohamad, Comp. Math. Appl. 59, 2260 (2010)

    Article  MathSciNet  Google Scholar 

  98. T. Inamuro, T. Ogato, S. Tajima, N. Konishi, J. Comp. Phys. 198, 628 (2004)

    Article  ADS  Google Scholar 

  99. H. Zheng, C. Shu, Y. Chew, J. Comput. Phys. 218 (1), 353 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  100. A. Mazloomi M, S.S. Chikatamarla, I.V. Karlin, Phys. Rev. Lett. 114, 174502 (2015)

    Google Scholar 

  101. A. Kuzmin, M. Januszewski, D. Eskin, F. Mostowfi, J. Derksen, Chem. Eng. J. 171, 646 (2011)

    Article  Google Scholar 

  102. A. Kuzmin, M. Januszewski, D. Eskin, F. Mostowfi, J. Derksen, Chem. Eng. J. 178, 306 (2011)

    Article  Google Scholar 

  103. A. Kuzmin, Multiphase simulations with lattice Boltzmann scheme. Ph.D. thesis, University of Calgary (2010)

    Google Scholar 

  104. M.L. Porter, E.T. Coon, Q. Kang, J.D. Moulton, J.W. Carey, Phys. Rev. E 86 (3), 036701 (2012)

    Article  ADS  Google Scholar 

  105. Q. Kang, D. Zhang, S. Chen, Adv. Water Resour. 27 (1), 13 (2004)

    Article  ADS  Google Scholar 

  106. Z. Yu, H. Yang, L.S. Fan, Chem. Eng. Sci. 66 (14), 3441 (2011)

    Article  Google Scholar 

  107. M. Monteferrante, S. Melchionna, U.M.B. Marconi, J. Chem. Phys. 141 (1), 014102 (2014)

    Article  ADS  Google Scholar 

  108. K. Premnath, J. Abraham, J. Comput. Phys. 224, 539 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  109. Z.H. Chai, T.S. Zhao, Acta. Mech. Sin. 28 (4), 983 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  110. D. Zhang, K. Papadikis, S. Gu, Int. J. Multiphas. Flow 64, 11 (2014)

    Article  MathSciNet  Google Scholar 

  111. K. Yang, Z. Guo, Sci. Bull. 60 (6), 634 (2015)

    Article  Google Scholar 

  112. Y.Q. Zu, S. He, Phys. Rev. E 87 (4), 043301 (2013)

    Article  ADS  Google Scholar 

  113. H. Liang, B.C. Shi, Z.H. Chai, Phys. Rev. E 93 (1), 013308 (2016)

    Article  ADS  Google Scholar 

  114. Y. Fu, S. Zhao, L. Bai, Y. Jin, Y. Cheng, Chem. Eng. Sci. 146, 126 (2016)

    Article  Google Scholar 

  115. H. Chen, B.M. Boghosian, P.V. Coveney, M. Nekovee, Proc. R. Soc. Lond. A 456, 2043 (2000)

    Article  ADS  Google Scholar 

  116. M. Nekovee, P.V. Coveney, H. Chen, B.M. Boghosian, Phys. Rev. E 62 (6), 8282 (2000)

    Article  ADS  Google Scholar 

  117. S. Bogner, U. Rüde, Comput. Math. Appl. 65 (6), 901 (2013)

    Article  MathSciNet  Google Scholar 

  118. D. Anderl, S. Bogner, C. Rauh, U. Rüde, A. Delgado, Comput. Math. Appl. 67 (2), 331 (2014)

    Article  MathSciNet  Google Scholar 

  119. S. Bogner, R. Ammer, U. Rüde, J. Comput. Phys. 297, 1 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  120. M. Gross, F. Varnik, Int. J. Mod. Phys. C 25 (01), 1340019 (2013)

    Article  ADS  Google Scholar 

  121. X. Frank, P. Perré, H.Z. Li, Phys. Rev. E 91 (5), 052405 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  122. Q. Li, Q.J. Kang, M.M. Francois, A.J. Hu, Soft Matter 12 (1), 302 (2015)

    Article  ADS  Google Scholar 

  123. C. Pan, M. Hilpert, C.T. Miller, Water Resour. Res. 40 (1), W01501 (2004)

    Article  ADS  Google Scholar 

  124. E.S. Boek, M. Venturoli, Comput. Math. Appl. 59 (7), 2305 (2010)

    Article  MathSciNet  Google Scholar 

  125. J. Onishi, A. Kawasaki, Y. Chen, H. Ohashi, Comput. Math. Appl. 55 (7), 1541 (2008)

    Article  MathSciNet  Google Scholar 

  126. A.S. Joshi, Y. Sun, Phys. Rev. E 79 (6), 066703 (2009)

    Article  ADS  Google Scholar 

  127. T. Krüger, S. Frijters, F. Günther, B. Kaoui, J. Harting, Eur. Phys. J. Spec. Top. 222 (1), 177 (2013)

    Article  Google Scholar 

  128. K.W. Connington, T. Lee, J.F. Morris, J. Comput. Phys. 283, 453 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  129. Q. Luo, Z. Guo, B. Shi, Phys. Rev. E 87 (063301), 1 (2013)

    Google Scholar 

  130. Z. Yu, O. Hemminger, L.S. Fan, Chem. Eng. Sci. 62, 7172 (2007)

    Article  Google Scholar 

  131. H. Liu, Y. Zhang, J. Appl. Phys. 106 (3), 1 (2009)

    Google Scholar 

  132. T. Munekata, T. Suzuki, S. Yamakawa, R. Asahi, Phys. Rev. E 88 (5), 052314 (2013)

    Article  ADS  Google Scholar 

  133. R. Ledesma-Aguilar, D. Vella, J.M. Yeomans, Soft Matter 10 (41), 8267 (2014)

    Article  ADS  Google Scholar 

  134. D. Sun, M. Zhu, S. Pan, D. Raabe, Acta Mater. 57 (6), 1755 (2009)

    Article  Google Scholar 

  135. R. Rojas, T. Takaki, M. Ohno, J. Comput. Phys. 298, 29 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  136. P.R. Di Palma, C. Huber, P. Viotti, Adv. Water Resour. 82, 139 (2015)

    Article  ADS  Google Scholar 

  137. G. Gonnella, E. Orlandini, J.M. Yeomans, Phys. Rev. E 58, 480 (1998)

    Article  ADS  Google Scholar 

  138. Q. Du, C. Liu, X. Wang, J. Comput. Phys. 198 (2), 450 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  139. J.S. Lowengrub, A. Rätz, A. Voigt, Phys. Rev. E 79, 031926 (2009)

    Article  ADS  Google Scholar 

  140. C. Denniston, E. Orlandini, J.M. Yeomans, Phys. Rev. E 63, 056702 (2001)

    Article  ADS  Google Scholar 

  141. J. Qian, C. Law, J. Fluid Mech. 331, 59 (1997)

    Article  ADS  Google Scholar 

  142. N. Ashgriz, J. Poo, J. Fluid Mech. 221, 183 (1990)

    Article  ADS  Google Scholar 

  143. C. Rabe, J. Malet, F. Feuillebois, Phys. Fluids 22 (047101), 1 (2010)

    Google Scholar 

  144. D. Lycett-Brown, K. Luo, R. Liu, P. Lv, Phys. Fluids 26 (023303), 1 (2014)

    Google Scholar 

  145. T. Inamuro, S. Tajima, F. Ogino, Int. J. Heat Mass Trans. 47, 4649 (2004)

    Article  Google Scholar 

  146. A. Moqaddam, S. Chikatamarla, I. Karlin, Phys. Fluids 28 (022106), 1 (2016)

    Google Scholar 

  147. A.E. Komrakova, D. Eskin, J.J. Derksen, Phys. Fluids 25 (4), 042102 (2013)

    Article  ADS  Google Scholar 

  148. O. Shardt, J.J. Derksen, S.K. Mitra, Langmuir 29, 6201 (2013)

    Article  Google Scholar 

  149. O. Shardt, S.K. Mitra, J.J. Derksen, Langmuir 30, 14416 (2014)

    Article  Google Scholar 

  150. H. Kusumaatmaja, C.M. Pooley, S. Girardo, D. Pisignano, J.M. Yeomans, Phys. Rev. E 77, 067301 (2008)

    Article  ADS  Google Scholar 

  151. J. Murison, B. Semin, J.C. Baret, S. Herminghaus, M. Schröter, M. Brinkmann, Phys. Rev. Appl. 2, 034002 (2014)

    Article  ADS  Google Scholar 

  152. A.A. Darhuber, S.M. Troian, Annu. Rev. Fluid Mech. 37 (1), 425 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  153. H. Gau, S. Herminghaus, P. Lenz, R. Lipowsky, Science 283 (5398), 46 (1999)

    Article  ADS  Google Scholar 

  154. M. Brinkmann, R. Lipowsky, J. Appl. Phys. 92 (8), 4296 (2002)

    Article  ADS  Google Scholar 

  155. H.P. Jansen, K. Sotthewes, J. van Swigchem, H.J.W. Zandvliet, E.S. Kooij, Phys. Rev. E 88, 013008 (2013)

    Article  ADS  Google Scholar 

  156. A. Dupuis, J. Léopoldés, D.G. Bucknall, J.M. Yeomans, Appl. Phys. Lett. 87 (2), 024103 (2005)

    Article  ADS  Google Scholar 

  157. S. Wang, T. Wang, P. Ge, P. Xue, S. Ye, H. Chen, Z. Li, J. Zhang, B. Yang, Langmuir 31 (13), 4032 (2015)

    Article  Google Scholar 

  158. D. Quéré, Annu. Rev. Mater. Res. 38 (1), 71 (2008)

    Article  ADS  Google Scholar 

  159. W. Barthlott, C. Neinhuis, Planta 202 (1), 1 (1997)

    Article  Google Scholar 

  160. J. Bico, C. Marzolin, D. Quéré, Europhys. Lett. 47 (2), 220 (1999)

    Article  ADS  Google Scholar 

  161. A. Tuteja, W. Choi, M. Ma, J.M. Mabry, S.A. Mazzella, G.C. Rutledge, G.H. McKinley, R.E. Cohen, Science 318 (5856), 1618 (2007)

    Article  ADS  Google Scholar 

  162. A.B.D. Cassie, S. Baxter, Trans. Faraday Soc. 40, 546 (1944)

    Article  Google Scholar 

  163. C.H. Choi, C.J. Kim, Phys. Rev. Lett. 96, 066001 (2006)

    Article  ADS  Google Scholar 

  164. R.N. Wenzel, J. Phys. Colloid Chem. 53 (9), 1466 (1949)

    Article  Google Scholar 

  165. F. Diotallevi, L. Biferale, S. Chibbaro, G. Pontrelli, F. Toschi, S. Succi, Euro. Phys. J. Special Topics 171 (1), 237 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Krüger, T., Kusumaatmaja, H., Kuzmin, A., Shardt, O., Silva, G., Viggen, E.M. (2017). Multiphase and Multicomponent Flows. In: The Lattice Boltzmann Method. Graduate Texts in Physics. Springer, Cham. https://doi.org/10.1007/978-3-319-44649-3_9

Download citation

Publish with us

Policies and ethics