Abstract
After reading this chapter, you will be able to expand lattice Boltzmann simulations by including non-ideal fluids, using either the free-energy or the Shan-Chen pseudopotential method. This will allow you to simulate fluids consisting of multiple phases (e.g. liquid water and water vapour) and multiple components (e.g. oil and water). You will also learn how the surface tension between fluid phases/components and the contact angle at solid surfaces can be varied and controlled.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Notes
- 1.
This concept can easily be extended to systems with more than two components by introducing more order parameters.
- 2.
In reality we cannot write ρ (1) = 0 or ρ (2) = 0 since the local density of a given component is never exactly zero. For example, in a water-oil mixture, one can always find a few water molecules in the oil-rich phase and the other way around. However, these minority densities are usually so small that we can neglect them here.
- 3.
For readers unfamiliar with Gibbs and Helmholtz free energies, their descriptions can be found in most textbooks on thermodynamics, e.g. [22]. Briefly, Gibbs free energy is usually used when the system is under constant pressure and temperature, while the Helmholtz free energy is taken when the system is under constant volume and temperature.
- 4.
This definition is strictly valid only for simple liquids. More generally, the energy per unit area for stretching the interface is given by Γ = γ + dγ∕dε where ε is the strain. For simple liquids we have dγ∕dε = 0 and Γ = γ.
- 5.
At a given point on a surface, we can define two radii of curvature, as shown in Fig. 9.3a. The mean curvature is simply defined as the average (1∕R 1 + 1∕R 2)∕2, while the Gaussian curvature is the product 1∕(R 1 R 2). Since one of the curvature radii can be negative and the other positive (e.g. a saddle surface), the mean curvature can vanish, even for a non-planar surface.
- 6.
For multicomponent flows, an additional equation of motion is needed to describe the evolution of the order parameter. This is usually given by the Cahn-Hilliard or Allen-Cahn equation, see e.g. Sect. 9.2.2.3.
- 7.
Thermodynamic consistency is defined in Sect. 9.1.1. See also Appendix A.7 where this is shown explicitly for the Landau multiphase model.
- 8.
We note that our convention here follows that of Chap. 6 In the literature, sometimes the prefactor \(\left (1 -\frac{1} {2\tau }\right )\) is included in the definition of F i itself.
- 9.
In fact, the tanh profile provides a good initial interfacial profile for most multiphase and multicomponent models.
- 10.
Differences usually become visible at low densities when the density is plotted logarithmically.
- 11.
We could also simulate a gas bubble in a liquid.
References
A.K. Gunstensen, D.H. Rothman, S. Zaleski, G. Zanetti, Phys. Rev. A 43 (8), 4320 (1991)
D. Grunau, S. Chen, K. Eggert, Phys. Fluids A 5 (10), 2557 (1993)
M.M. Dupin, I. Halliday, C.M. Care, J. Phys. A: Math. Gen. 36 (31), 8517 (2003)
M. Latva-Kokko, D.H. Rothman, Phys. Rev. E 71 (5), 056702 (2005)
H. Liu, A.J. Valocchi, Q. Kang, Phys. Rev. E 85 (4), 046309 (2012)
S. Leclaire, M. Reggio, J.Y. Trépanier, J. Comput. Phys. 246, 318 (2013)
P. Asinari, Phys. Rev. E 73 (5), 056705 (2006)
S. Arcidiacono, I.V. Karlin, J. Mantzaras, C.E. Frouzakis, Phys. Rev. E 76 (4), 046703 (2007)
T.J. Spencer, I. Halliday, Phys. Rev. E 88 (6), 063305 (2013)
J. Tölke, G.D. Prisco, Y. Mu, Comput. Math. Appl. 65 (6), 864 (2013)
L. Scarbolo, D. Molin, P. Perlekar, M. Sbragaglia, A. Soldati, F. Toschi, J. Comput. Phys. 234, 263 (2013)
L. Chen, Q. Kang, Y. Mu, Y.L. He, W.Q. Tao, Int. J. Heat Mass Transfer 76, 210 (2014)
H. Liu, Q. Kang, C.R. Leonardi, S. Schmieschek, A. Narváez, B.D. Jones, J.R. Williams, A.J. Valocchi, J. Harting, Comput. Geosci. pp. 1–29 (2015)
H. Huang, M.C. Sukop, X.Y. Lu, Multiphase Lattice Boltzmann Methods: Theory and Applications (Wiley-Blackwell, Hoboken, 2015)
C.E. Brennen, Fundamentals of Multiphase Flows (Cambridge University Press, Cambridge, 2005)
J. Bibette, F.L. Calderon, P. Poulin, Reports Progress Phys. 62 (6), 969 (1999)
M.J. Blunt, Current Opinion Colloid Interface Sci. 6 (3), 197 (2001)
A. Faghri, Y. Zhang, Transport Phenomena in Multiphase Systems (Elsevier, Amsterdam, 2006)
C.D. Han, Multiphase Flow in Polymer Processing (Academic Press, New York, 1981)
A. Gunther, K.F. Jensen, Lab Chip 6, 1487 (2006)
C. Wang, P. Cheng, Int. J. Heat Mass Transfer 39 (17), 3607 (1996)
S. Blundell, K.M. Blundell, Concepts in Thermal Physics (Oxford University Press, Oxford, 2006)
M. Doi, T. Ohta, J. Chem. Phys. 95 (2), 1242 (1991)
T.G. Mason, Current Opinion Colloid Interface Sci. 4 (3), 231 (1999)
R. Osserman, A Survey of Minimal Surfaces (Dover Publications, New York, 1986)
L.D. Landau, E.M. Lifshitz, Fluid Mechanics (Pergamon Press, Oxford, 1987)
P.G. de Gennes, F. Brochard-Wyart, D. Quéré, Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves (Springer, New York, 2004)
J.S. Rowlinson, B. Widom, Molecular Theory of Capillarity (Oxford University Press, Oxford, 1989)
J.L. Barrat, L. Bocquet, Phys. Rev. Lett. 82, 4671 (1999)
D.M. Huang, C. Sendner, D. Horinek, R.R. Netz, L. Bocquet, Phys. Rev. Lett. 101, 226101 (2008)
A. Lafuma, Quéré, Nat. Mat. 2, 457–460 (2003)
J. Léopoldés, A. Dupuis, D.G. Bucknall, J.M. Yeomans, Langmuir 19 (23), 9818 (2003)
Z. Wang, J. Yang, B. Koo, F. Stern, Int. J. Multiphase Flow 35 (3), 227 (2009)
G. Tryggvason, B. Bunner, A. Esmaeeli, D. Juric, N. Al-Rawahi, W. Tauber, J. Han, S. Nas, Y.J. Jan, J. Comput. Phys. 169 (2), 708 (2001)
C.S. Peskin, Acta Numerica 11, 479–517 (2002)
J. van der Walls, J. Stat. Phys. 20 (2), 197 (1979)
D. Anderson, G. McFadden, A. Wheeler, Annu. Rev. Fluid Mech. 30, 139 (1998)
J.G. Kirkwood, F.P. Buff, J. Chem. Phys. 17 (3), 338 (1949)
M.R. Swift, W.R. Osborn, J.M. Yeomans, Phys. Rev. Lett. 75, 830 (1995)
M.R. Swift, E. Orlandini, W.R. Osborn, J.M. Yeomans, Phys. Rev. E 54, 5041 (1996)
A.J. Briant, A.J. Wagner, J.M. Yeomans, Phys. Rev. E 69, 031602 (2004)
A.J. Briant, J.M. Yeomans, Phys. Rev. E 69, 031603 (2004)
C. Semprebon, T. Krüger, H. Kusumaatmaja, Phys. Rev. E 93 (3), 033305 (2016)
T. Lee, C.L. Lin, J. Comput. Phys. 206 (1), 16 (2005)
A. Mazloomi M., S.S. Chikatamarla, I.V. Karlin, Phys. Rev. E 92 (2), 023308 (2015)
G. Gompper, S. Zschocke, Europhys. Lett. 16 (8), 731 (1991)
V.M. Kendon, M.E. Cates, I. Pagonabarraga, J.C. Desplat, P. Bladon, J. Fluid Mech. 440, 147 (2001)
A. Wagner, Q. Li, Physica A Stat. Mech. Appl. 362 (1), 105 (2006)
T. Lee, P.F. Fischer, Phys. Rev. E 74, 046709 (2006)
T. Seta, K. Okui, JFST 2 (1), 139 (2007)
C.M. Pooley, K. Furtado, Phys. Rev. E 77, 046702 (2008)
Z. Guo, C. Zheng, B. Shi, Phys. Rev. E 65, 46308 (2002)
K. Connington, T. Lee, J. Mech. Sci. Technol. 26 (12), 3857 (2012)
D. Jamet, D. Torres, J. Brackbill, J. Comput. Phys. 182 (1), 262 (2002)
A.J. Wagner, Int. J. Modern Phys. B 17 (01n02), 193 (2003)
T. Inamuro, N. Konishi, F. Ogino, Comput. Phys. Commun. 129 (1), 32 (2000)
D.J. Holdych, D. Rovas, J.G. Georgiadis, R.O. Buckius, Int. J. Modern Phys. C 09 (08), 1393 (1998)
H. Kusumaatmaja, J. Léopoldés, A. Dupuis, J. M. Yeomans, Europhys. Lett. 73 (5), 740 (2006)
J.W. Cahn, J. Chem. Phys. 66 (8), 3667 (1977)
K.F. Riley, M.P. Hobson, S.J. Bence, Mathematical Methods for Physics and Engineering (3rd edition): A Comprehensive Guide (CUP, Cambridge, 2006)
H. Kusumaatmaja, J.M. Yeomans, in Simulating Complex Systems by Cellular Automata, ed. by J. Kroc, P.M. Sloot, A.G. Hoekstra, Understanding Complex Systems (Springer, New York, 2010), chap. 11, pp. 241–274
A. Lamura, G. Gonnella, J.M. Yeomans, Europhys. Lett. 45 (3), 314 (1999)
Q. Li, A.J. Wagner, Phys. Rev. E 76 (3), 036701 (2007)
J.W. Cahn, C.M. Elliott, A. Novick-Cohen, Eur. J. Appl. Math. 7, 287 (1996)
J. Zhu, L.Q. Chen, J. Shen, V. Tikare, Phys. Rev. E 60, 3564 (1999)
H. Kusumaatmaja, E.J. Hemingway, S.M. Fielding, J. Fluid Mech. 788, 209 (2016)
J.J. Huang, C. Shu, Y.T. Chew, Phys. Fluids 21 (2) (2009)
X. Shan, H. Chen, Phys. Rev. E 47 (3), 1815 (1993)
X. Shan, G. Doolen, J. Stat. Phys. 81 (1), 379 (1995)
J. Zhang, F. Tian, Europhys. Lett. 81 (6), 66005 (2008)
N.S. Martys, H. Chen, Phys. Rev. E 53 (1), 743 (1996)
X. Shan, H. Chen, Phys. Rev. E 49 (4), 2941 (1994)
M.C. Sukop, D.T. Thorne, Lattice Boltzmann Modeling: An Introduction for Geoscientists and Engineers (Springer, New York, 2006)
M. Sbragaglia, R. Benzi, L. Biferale, S. Succi, K. Sugiyama, F. Toschi, Phys. Rev. E 75 (026702), 1 (2007)
M. Sbragaglia, H. Chen, X. Shan, S. Succi, Europhys. Lett. 86 (2), 24005 (2009)
J. Bao, L. Schaefer, Appl. Math. Model. 37 (4), 1860 (2013)
D. Lycett-Brown, K.H. Luo, Phys. Rev. E 91, 023305 (2015)
P. Yuan, L. Schaefer, Phys. Fluids 18 (042101), 1 (2006)
A. Kuzmin, A. Mohamad, S. Succi, Int. J. Mod. Phys. C 19 (6), 875 (2008)
R. Benzi, L. Biferale, M. Sbragaglia, S. Succi, F. Toschi, Phys. Rev. E 74 (2), 021509 (2006)
Z. Yu, L.S. Fan, Phys. Rev. E 82 (4), 046708 (2010)
X. Shan, Phys. Rev. E 81 (4), 045701 (2010)
M. Sega, M. Sbragaglia, S.S. Kantorovich, A.O. Ivanov, Soft Matter 9 (42), 10092 (2013)
X. Shan, G. Doolen, Phys. Rev. E 54 (4), 3614 (1996)
J. Yang, E.S. Boek, Comput. Math. Appl. 65 (6), 882 (2013)
H. Liu, Y. Zhang, A.J. Valocchi, Phys. Fluids 27 (5), 052103 (2015)
H. Huang, D.T. Thorne, M.G. Schaap, M.C. Sukop, Phys. Rev. E 76 (6), 066701 (2007)
S. Chibbaro, Eur. Phys. J. E 27 (1), 99 (2008)
F. Jansen, J. Harting, Phys. Rev. E 83 (4), 046707 (2011)
I. Ginzburg, G. Wittum, J. Comp. Phys. 166 (2), 302 (2001)
A. Kupershtokh, D. Medvedev, D. Karpov, Comput. Math. Appl. 58 (5), 965 (2009)
R. Benzi, M. Sbragaglia, S. Succi, M. Bernaschi, S. Chibbaro, J. Chem. Phys. 131 (10), 104903 (2009)
R. Benzi, M. Bernaschi, M. Sbragaglia, S. Succi, Europhys. Lett. 91 (1), 14003 (2010)
S. Chibbaro, G. Falcucci, G. Chiatti, H. Chen, X. Shan, S. Succi, Phys. Rev. E 77 (036705), 1 (2008)
Z. Guo, C. Zheng, B. Shi, Phys. Rev. E 83, 036707 (2011)
D. Chiappini, G. Bella, S. Succi, F. Toschi, S. Ubertini, Commun. Comput. Phys. 7, 423 (2010)
A. Kuzmin, A. Mohamad, Comp. Math. Appl. 59, 2260 (2010)
T. Inamuro, T. Ogato, S. Tajima, N. Konishi, J. Comp. Phys. 198, 628 (2004)
H. Zheng, C. Shu, Y. Chew, J. Comput. Phys. 218 (1), 353 (2006)
A. Mazloomi M, S.S. Chikatamarla, I.V. Karlin, Phys. Rev. Lett. 114, 174502 (2015)
A. Kuzmin, M. Januszewski, D. Eskin, F. Mostowfi, J. Derksen, Chem. Eng. J. 171, 646 (2011)
A. Kuzmin, M. Januszewski, D. Eskin, F. Mostowfi, J. Derksen, Chem. Eng. J. 178, 306 (2011)
A. Kuzmin, Multiphase simulations with lattice Boltzmann scheme. Ph.D. thesis, University of Calgary (2010)
M.L. Porter, E.T. Coon, Q. Kang, J.D. Moulton, J.W. Carey, Phys. Rev. E 86 (3), 036701 (2012)
Q. Kang, D. Zhang, S. Chen, Adv. Water Resour. 27 (1), 13 (2004)
Z. Yu, H. Yang, L.S. Fan, Chem. Eng. Sci. 66 (14), 3441 (2011)
M. Monteferrante, S. Melchionna, U.M.B. Marconi, J. Chem. Phys. 141 (1), 014102 (2014)
K. Premnath, J. Abraham, J. Comput. Phys. 224, 539 (2007)
Z.H. Chai, T.S. Zhao, Acta. Mech. Sin. 28 (4), 983 (2012)
D. Zhang, K. Papadikis, S. Gu, Int. J. Multiphas. Flow 64, 11 (2014)
K. Yang, Z. Guo, Sci. Bull. 60 (6), 634 (2015)
Y.Q. Zu, S. He, Phys. Rev. E 87 (4), 043301 (2013)
H. Liang, B.C. Shi, Z.H. Chai, Phys. Rev. E 93 (1), 013308 (2016)
Y. Fu, S. Zhao, L. Bai, Y. Jin, Y. Cheng, Chem. Eng. Sci. 146, 126 (2016)
H. Chen, B.M. Boghosian, P.V. Coveney, M. Nekovee, Proc. R. Soc. Lond. A 456, 2043 (2000)
M. Nekovee, P.V. Coveney, H. Chen, B.M. Boghosian, Phys. Rev. E 62 (6), 8282 (2000)
S. Bogner, U. Rüde, Comput. Math. Appl. 65 (6), 901 (2013)
D. Anderl, S. Bogner, C. Rauh, U. Rüde, A. Delgado, Comput. Math. Appl. 67 (2), 331 (2014)
S. Bogner, R. Ammer, U. Rüde, J. Comput. Phys. 297, 1 (2015)
M. Gross, F. Varnik, Int. J. Mod. Phys. C 25 (01), 1340019 (2013)
X. Frank, P. Perré, H.Z. Li, Phys. Rev. E 91 (5), 052405 (2015)
Q. Li, Q.J. Kang, M.M. Francois, A.J. Hu, Soft Matter 12 (1), 302 (2015)
C. Pan, M. Hilpert, C.T. Miller, Water Resour. Res. 40 (1), W01501 (2004)
E.S. Boek, M. Venturoli, Comput. Math. Appl. 59 (7), 2305 (2010)
J. Onishi, A. Kawasaki, Y. Chen, H. Ohashi, Comput. Math. Appl. 55 (7), 1541 (2008)
A.S. Joshi, Y. Sun, Phys. Rev. E 79 (6), 066703 (2009)
T. Krüger, S. Frijters, F. Günther, B. Kaoui, J. Harting, Eur. Phys. J. Spec. Top. 222 (1), 177 (2013)
K.W. Connington, T. Lee, J.F. Morris, J. Comput. Phys. 283, 453 (2015)
Q. Luo, Z. Guo, B. Shi, Phys. Rev. E 87 (063301), 1 (2013)
Z. Yu, O. Hemminger, L.S. Fan, Chem. Eng. Sci. 62, 7172 (2007)
H. Liu, Y. Zhang, J. Appl. Phys. 106 (3), 1 (2009)
T. Munekata, T. Suzuki, S. Yamakawa, R. Asahi, Phys. Rev. E 88 (5), 052314 (2013)
R. Ledesma-Aguilar, D. Vella, J.M. Yeomans, Soft Matter 10 (41), 8267 (2014)
D. Sun, M. Zhu, S. Pan, D. Raabe, Acta Mater. 57 (6), 1755 (2009)
R. Rojas, T. Takaki, M. Ohno, J. Comput. Phys. 298, 29 (2015)
P.R. Di Palma, C. Huber, P. Viotti, Adv. Water Resour. 82, 139 (2015)
G. Gonnella, E. Orlandini, J.M. Yeomans, Phys. Rev. E 58, 480 (1998)
Q. Du, C. Liu, X. Wang, J. Comput. Phys. 198 (2), 450 (2004)
J.S. Lowengrub, A. Rätz, A. Voigt, Phys. Rev. E 79, 031926 (2009)
C. Denniston, E. Orlandini, J.M. Yeomans, Phys. Rev. E 63, 056702 (2001)
J. Qian, C. Law, J. Fluid Mech. 331, 59 (1997)
N. Ashgriz, J. Poo, J. Fluid Mech. 221, 183 (1990)
C. Rabe, J. Malet, F. Feuillebois, Phys. Fluids 22 (047101), 1 (2010)
D. Lycett-Brown, K. Luo, R. Liu, P. Lv, Phys. Fluids 26 (023303), 1 (2014)
T. Inamuro, S. Tajima, F. Ogino, Int. J. Heat Mass Trans. 47, 4649 (2004)
A. Moqaddam, S. Chikatamarla, I. Karlin, Phys. Fluids 28 (022106), 1 (2016)
A.E. Komrakova, D. Eskin, J.J. Derksen, Phys. Fluids 25 (4), 042102 (2013)
O. Shardt, J.J. Derksen, S.K. Mitra, Langmuir 29, 6201 (2013)
O. Shardt, S.K. Mitra, J.J. Derksen, Langmuir 30, 14416 (2014)
H. Kusumaatmaja, C.M. Pooley, S. Girardo, D. Pisignano, J.M. Yeomans, Phys. Rev. E 77, 067301 (2008)
J. Murison, B. Semin, J.C. Baret, S. Herminghaus, M. Schröter, M. Brinkmann, Phys. Rev. Appl. 2, 034002 (2014)
A.A. Darhuber, S.M. Troian, Annu. Rev. Fluid Mech. 37 (1), 425 (2005)
H. Gau, S. Herminghaus, P. Lenz, R. Lipowsky, Science 283 (5398), 46 (1999)
M. Brinkmann, R. Lipowsky, J. Appl. Phys. 92 (8), 4296 (2002)
H.P. Jansen, K. Sotthewes, J. van Swigchem, H.J.W. Zandvliet, E.S. Kooij, Phys. Rev. E 88, 013008 (2013)
A. Dupuis, J. Léopoldés, D.G. Bucknall, J.M. Yeomans, Appl. Phys. Lett. 87 (2), 024103 (2005)
S. Wang, T. Wang, P. Ge, P. Xue, S. Ye, H. Chen, Z. Li, J. Zhang, B. Yang, Langmuir 31 (13), 4032 (2015)
D. Quéré, Annu. Rev. Mater. Res. 38 (1), 71 (2008)
W. Barthlott, C. Neinhuis, Planta 202 (1), 1 (1997)
J. Bico, C. Marzolin, D. Quéré, Europhys. Lett. 47 (2), 220 (1999)
A. Tuteja, W. Choi, M. Ma, J.M. Mabry, S.A. Mazzella, G.C. Rutledge, G.H. McKinley, R.E. Cohen, Science 318 (5856), 1618 (2007)
A.B.D. Cassie, S. Baxter, Trans. Faraday Soc. 40, 546 (1944)
C.H. Choi, C.J. Kim, Phys. Rev. Lett. 96, 066001 (2006)
R.N. Wenzel, J. Phys. Colloid Chem. 53 (9), 1466 (1949)
F. Diotallevi, L. Biferale, S. Chibbaro, G. Pontrelli, F. Toschi, S. Succi, Euro. Phys. J. Special Topics 171 (1), 237 (2009)
Author information
Authors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Krüger, T., Kusumaatmaja, H., Kuzmin, A., Shardt, O., Silva, G., Viggen, E.M. (2017). Multiphase and Multicomponent Flows. In: The Lattice Boltzmann Method. Graduate Texts in Physics. Springer, Cham. https://doi.org/10.1007/978-3-319-44649-3_9
Download citation
DOI: https://doi.org/10.1007/978-3-319-44649-3_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-44647-9
Online ISBN: 978-3-319-44649-3
eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)