Abstract
After reading this chapter, you will understand how the lattice Boltzmann equation can be adapted from flow problems to advection-diffusion problems with only small changes. These problems include thermal flows, and you will know how to simulate these as two interlinked lattice Boltzmann simulations, one for the flow and one for the thermal advection-diffusion. You will understand how advection-diffusion problems require different boundary conditions from flow problems, and how these boundary conditions may be implemented.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Notes
- 1.
Of course “conserved” quantities are only conserved in the absence of source terms.
- 2.
Note that D2Q5 and D3Q7 are not sufficient for problems involving anisotropic diffusion with non-zero off-diagonal coefficients [8].
- 3.
D3Q21 is the D3Q15 lattice with six additional vectors (±2, 0, 0)⊤, (0, ±2, 0)⊤ and (0, 0, ±2)⊤.
References
R.B. Bird, W.E. Stewart, E.N. Lightfoot, Transport Phenomena, 2nd edn. (Wiley, New York, 1960)
D. Wolf-Gladrow, J. Stat. Phys. 79 (5–6), 1023 (1995)
E.G. Flekkoy, Phys. Rev. E 47 (6), 4247 (1993)
T. Inamuro, M. Yoshino, H. Inoue, R. Mizuno, F. Ogino, J. Comp. Phys. 179 (1), 201 (2002)
X. Shan, Phys. Rev. E 55 (3), 2780 (1997)
X. He, S. Chen, G.D. Doolen, J. Comput. Phys. 146 (1), 282 (1998)
T. Toffoli, N.H. Margolus, Physica D 45 (1-3), 229 (1990)
I. Ginzburg, Adv. Water Resour. 28 (11), 1171 (2005)
S. Suga, Int. J. Mod. Phys. C 17 (11), 1563 (2006)
I. Ginzburg, D. d’Humières, A. Kuzmin, J. Stat. Phys. 139 (6), 1090 (2010)
L. Li, C. Chen, R. Mei, J.F. Klausner, Phys. Rev. E 89 (4), 043308 (2014)
H.B. Huang, X.Y. Lu, M.C. Sukop, J. Phys. A: Math. Theor. 44 (5), 055001 (2011)
B. Chopard, J.L. Falcone, J. Latt, Eur. Phys. J. Spec. Top. 171, 245 (2009)
Z. Chai, T.S. Zhao, Phys. Rev. E 87 (6), 063309 (2013)
I.V. Karlin, D. Sichau, S.S. Chikatamarla, Phys. Rev. E 88 (6), 063310 (2013)
Q. Kang, P.C. Lichtner, D. Zhang, J. Geophys. Res. 111 (B5), B05203 (2006)
S.G. Ayodele, F. Varnik, D. Raabe, Phys. Rev. E 83 (1), 016702 (2011)
J. Zhang, G. Yan, Comput. Math. Appl. 69 (3), 157 (2015)
X. Yang, B. Shi, Z. Chai, Comput. Math. Appl. 68 (12, Part A), 1653 (2014)
J. Kang, N.I. Prasianakis, J. Mantzaras, Phys. Rev. E 89 (6), 063310 (2014)
T. Seta, Phys. Rev. E 87 (6), 063304 (2013)
B. Shi, B. Deng, R. Du, X. Chen, Comput. Math. Appl. 55 (7), 1568 (2008)
I. Ginzburg, Adv. Water Resour. 28 (11), 1196 (2005)
S. Suga, Int. J. Mod. Phys. C 20, 633 (2009)
H. Yoshida, M. Nagaoka, J. Comput. Phys. 229 (20), 7774 (2010)
I. Ginzburg, Commun. Comput. Phys. 11, 1439 (2012)
A. Mohamad, Lattice Boltzmann Method: Fundamentals and Engineering Applications with Computer Codes, 1st edn. (Springer, New York, 2011)
R.G.M. Van der Sman, Phys. Rev. E 74, 026705 (2006)
R. Huang, H. Wu, Phys. Rev. E 89 (4), 043303 (2014)
Q. Li, Z. Chai, B. Shi, Comput. Math. Appl. 70 (4), 548 (2015)
J. Perko, R.A. Patel, Phys. Rev. E 89 (5), 053309 (2014)
X. Yang, B. Shi, Z. Chai, Phys. Rev. E 90 (1), 013309 (2014)
B. Servan-Camas, F. Tsai, Adv. Water Resour. 31, 1113 (2008)
I. Ginzburg, Adv. Water Resour. 51, 381 (2013)
Z. Chai, T.S. Zhao, Phys. Rev. E 90 (1), 013305 (2014)
R. Huang, H. Wu, J. Comput. Phys. 274, 50 (2014)
E.D. Siggia, Ann. Rev. Fluid Mech. 26, 137 (1994)
W.H. Reid, D.L. Harris, Phys. Fluids 1 (2), 102 (1958)
F.J. Alexander, S. Chen, J.D. Sterling, Phys. Rev. E 47 (4), R2249 (1993)
Y. Chen, H. Ohashi, M. Akiyama, Phys. Rev. E 50 (4), 2776 (1994)
Y.H. Qian, J. Sci. Comput. 8 (3), 231 (1993)
G.R. McNamara, A.L. Garcia, B.J. Alder, J. Stat. Phys. 81 (1–2), 395 (1995)
D.A. Wolf-Gladrow, Lattice-Gas Cellular Automata and Lattice Boltzmann Models (Springer, New York, 2005)
Y. Peng, C. Shu, Y.T. Chew, Phys. Rev. E 68 (2), 026701 (2003)
Z. Guo, C. Zheng, B. Shi, T.S. Zhao, Phys. Rev. E 75 (3), 036704 (2007)
S. Chen, K.H. Luo, C. Zheng, J. Comput. Phys. 231 (24) (2012)
P.A. Thompson, Compressible-Fluid Dynamics (McGraw-Hill, New York, 1972)
Z. Guo, B. Shi, C. Zheng, Int. J. Numer. Meth. Fluids 39 (4), 325 (2002)
T. Zhang, B. Shi, Z. Guo, Z. Chai, J. Lu, Phys. Rev. E 85 (016701), 1 (2012)
M. Yoshino, T. Inamuro, Int. J. Num. Meth. Fluids 43 (2), 183 (2003)
A. Polyanin, A. Kutepov, A. Vyazmin, D. Kazenin, Hydrodynamics, Mass and Heat Transfer in Chemical Engineering (Taylor and Francis, London, 2002)
M. Ozisik, Heat Conduction (Wiley, New York, 1993)
A. Kuzmin, M. Januszewski, D. Eskin, F. Mostowfi, J. Derksen, Chem. Eng. J. 225, 580 (2013)
Author information
Authors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Krüger, T., Kusumaatmaja, H., Kuzmin, A., Shardt, O., Silva, G., Viggen, E.M. (2017). Lattice Boltzmann for Advection-Diffusion Problems. In: The Lattice Boltzmann Method. Graduate Texts in Physics. Springer, Cham. https://doi.org/10.1007/978-3-319-44649-3_8
Download citation
DOI: https://doi.org/10.1007/978-3-319-44649-3_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-44647-9
Online ISBN: 978-3-319-44649-3
eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)