Advertisement

Forces

  • Timm Krüger
  • Halim Kusumaatmaja
  • Alexandr Kuzmin
  • Orest Shardt
  • Goncalo Silva
  • Erlend Magnus Viggen
Chapter
Part of the Graduate Texts in Physics book series (GTP)

Abstract

After reading this chapter, you will be able to add forces to lattice Boltzmann simulations while retaining their accuracy. You will know how a forcing scheme can be derived by including forces in the derivation of the lattice Boltzmann equation, though you will also know that there are a number of other forcing schemes available. You will understand how to investigate forcing models and their errors through the Chapman-Enskog analysis, and how initial and boundary conditions can be affected by the presence of forces.

Keywords

Boltzmann Equation Force Term Force Density Velocity Discretisation Velocity Moment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    E. Bodenschatz, W. Pesch, G.Ahlers, Annu. Rev. Fluid Mech. 32, 709 (2010)Google Scholar
  2. 2.
    S.I. Abarzhi, Phil. Trans. R. Soc. A 368, 1809 (2010)ADSCrossRefGoogle Scholar
  3. 3.
    J. Lighthill, Waves in Fluids, 6th edn. (Cambridge University Press, Cambridge, 1979)zbMATHGoogle Scholar
  4. 4.
    J.M. Buick, C.A. Greated, Phys. Rev. E 61 (5), 5307 (2000)ADSCrossRefGoogle Scholar
  5. 5.
    G. Silva, V. Semiao, J. Fluid Mech. 698, 282 (2012)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    P.J. Dellar, Comput. Math. Appl. 65 (2), 129 (2013)MathSciNetCrossRefGoogle Scholar
  7. 7.
    R. Salmon, J. Mar. Res. 57 (3), 847 (1999)MathSciNetCrossRefGoogle Scholar
  8. 8.
    J. Wang, M. Wang, Z. Li, J. Colloid Interf. Sci. 296, 729 (2006)CrossRefGoogle Scholar
  9. 9.
    M. Wang, Q. Kang, J. Comput. Phys. 229, 728 (2010)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    T.Y. Lin, C.L. Chen, Appl. Math. Model. 37, 2816 (2013)MathSciNetCrossRefGoogle Scholar
  11. 11.
    O. Shardt, S.K. Mitra, J.J. Derksen, Chem. Eng. J. 302, 314 (2016)CrossRefGoogle Scholar
  12. 12.
    S.H. Kim, H. Pitsch, Phys. Fluids 19, 108101 (2007)ADSCrossRefGoogle Scholar
  13. 13.
    J. Zhang, D.Y. Kwok, Phys. Rev. E 73, 047702 (2006)ADSCrossRefGoogle Scholar
  14. 14.
    L. Talon, D. Bauer, D. Gland, H. Auradou, I. Ginzburg, Water Resour. Res. 48, W04526 (2012)ADSCrossRefGoogle Scholar
  15. 15.
    Z. Guo, C. Zheng, B. Shi, Phys. Rev. E 65, 46308 (2002)ADSCrossRefGoogle Scholar
  16. 16.
    N.S. Martys, X. Shan, H. Chen, Phys. Rev. E 58 (5), 6855 (1998)ADSCrossRefGoogle Scholar
  17. 17.
    X. Shan, X.F. Yuan, H. Chen, J. Fluid Mech. 550, 413 (2006)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    L.S. Luo, Phys. Rev. E 62 (4), 4982 (2000)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    P. Dellar, Phys. Rev. E 64 (3) (2001)Google Scholar
  20. 20.
    A.J.C. Ladd, R. Verberg, J. Stat. Phys. 104 (5–6), 1191 (2001)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    S. Ansumali, I.V. Karlin, H.C. Öttinger, Phys. Rev. Lett. 94, 080602 (2005)ADSCrossRefGoogle Scholar
  22. 22.
    J.R. Clausen, Phys. Rev. E 87, 013309 (2013)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    G. Silva, V. Semiao, Physica A 390 (6), 1085 (2011)ADSCrossRefGoogle Scholar
  24. 24.
    Z. Guo, C. Zheng, B. Shi, T. Zhao, Phys. Rev. E 75 (036704), 1 (2007)Google Scholar
  25. 25.
    R.W. Nash, R. Adhikari, M.E. Cates, Phys. Rev. E 77 (2), 026709 (2008)ADSCrossRefGoogle Scholar
  26. 26.
    S. Ubertini, P. Asinari, S. Succi, Phys. Rev. E 81 (1), 016311 (2010)ADSCrossRefGoogle Scholar
  27. 27.
    X. He, S. Chen, G.D. Doolen, J. Comput. Phys. 146 (1), 282 (1998)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    A. Kuzmin, Z. Guo, A. Mohamad, Phil. Trans. Royal Soc. A 369, 2219 (2011)ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    R.G.M. Van der Sman, Phys. Rev. E 74, 026705 (2006)ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    S.D.C. Walsh, H. Burwinkle, M.O. Saar, Comput. Geosci. 35 (6), 1186 (2009)ADSCrossRefGoogle Scholar
  31. 31.
    Z. Guo, T.S. Zhao, Phys. Rev. E 66, 036304 (2002)ADSCrossRefGoogle Scholar
  32. 32.
    X. Nie, N.S. Martys, Phys. Fluids 19, 011702 (2007)ADSCrossRefGoogle Scholar
  33. 33.
    I. Ginzburg, Phys. Rev. E 77, 066704 (2008)ADSCrossRefGoogle Scholar
  34. 34.
    I. Ginzburg, G. Silva, L. Talon, Phys. Rev. E 91, 023307 (2015)ADSMathSciNetCrossRefGoogle Scholar
  35. 35.
    R. Salmon, J. Mar. Res. 57 (3), 503 (1999)MathSciNetCrossRefGoogle Scholar
  36. 36.
    H. Huang, M. Krafczyk, X. Lu, Phys. Rev. E 84 (4), 046710 (2011)ADSCrossRefGoogle Scholar
  37. 37.
    I. Ginzburg, F. Verhaeghe, D. d’Humières, Commun. Comput. Phys. 3, 427 (2008)MathSciNetGoogle Scholar
  38. 38.
    X. Shan, H. Chen, Phys. Rev. E 47 (3), 1815 (1993)ADSCrossRefGoogle Scholar
  39. 39.
    X. He, X. Shan, G. Doolen, Phys. Rev. E. Rapid Comm. 57 (1), 13 (1998)ADSCrossRefGoogle Scholar
  40. 40.
    A. Kupershtokh, D. Medvedev, D. Karpov, Comput. Math. Appl. 58 (5), 965 (2009)MathSciNetCrossRefGoogle Scholar
  41. 41.
    D. Lycett-Brown, K.H. Luo, Phys. Rev. E 91, 023305 (2015)ADSCrossRefGoogle Scholar
  42. 42.
    A. Kupershtokh, in Proc. 5th International EHD Workshop, University of Poitiers, Poitiers, France (2004), p. 241–246Google Scholar
  43. 43.
    X. He, Q. Zou, L.S. Luo, M. Dembo, J. Stat. Phys. 87 (1–2), 115 (1997)ADSMathSciNetCrossRefGoogle Scholar
  44. 44.
    L.S. Luo, Phys. Rev. Lett. 81 (8), 1618 (1998)ADSCrossRefGoogle Scholar
  45. 45.
    I. Ginzbourg, P.M. Adler, J. Phys. II France 4 (2), 191 (1994)CrossRefGoogle Scholar
  46. 46.
    A.J.C. Ladd, J. Fluid Mech. 271, 285 (1994)ADSMathSciNetCrossRefGoogle Scholar
  47. 47.
    Z. Guo, C. Zheng, B. Shi, Phys. Rev. E 83, 036707 (2011)ADSCrossRefGoogle Scholar
  48. 48.
    I. Halliday, L.A. Hammond, C.M. Care, K. Good, A. Stevens, Phys. Rev. E 64, 011208 (2001)ADSCrossRefGoogle Scholar
  49. 49.
    T. Reis, T.N. Phillips, Phys. Rev. E 75, 056703 (2007)ADSMathSciNetCrossRefGoogle Scholar
  50. 50.
    I. Ginzburg, F. Verhaeghe, D. d’Humières, Commun. Comput. Phys. 3, 519 (2008)MathSciNetGoogle Scholar
  51. 51.
    M. Gross, N. Moradi, G. Zikos, F. Varnik, Phys. Rev. E 83 (1), 017701 (2011)ADSCrossRefGoogle Scholar
  52. 52.
    Q. Zou, X. He, Phys. Fluids 9, 1591 (1997)ADSMathSciNetCrossRefGoogle Scholar
  53. 53.
    A. D’Orazio, S. Succi, Future Generation Comput. Syst. 20, 935 (2004)CrossRefGoogle Scholar
  54. 54.
    A. Markus, G. Hazi, Phys. Rev. E 83, 046705 (2011)ADSCrossRefGoogle Scholar
  55. 55.
    A. Karimipour, A.H. Nezhad, A. D’Orazio, E. Shirani, J. Theor. Appl. Mech. 51, 447 (2013)Google Scholar
  56. 56.
    D.R. Noble, Chen, J.G. Georgiadis, R.O. Buckius, Phys. Fluids 7, 203 (1995)Google Scholar
  57. 57.
    M. Bouzidi, M. Firdaouss, P. Lallemand, Phys. Fluids 13, 3452 (2001)ADSCrossRefGoogle Scholar
  58. 58.
    D.A. Wolf-Gladrow, Lattice-Gas Cellular Automata and Lattice Boltzmann Models (Springer, New York, 2005)zbMATHGoogle Scholar
  59. 59.
    M. Junk, A. Klar, L.S. Luo, J. Comput. Phys. 210, 676 (2005)ADSMathSciNetCrossRefGoogle Scholar
  60. 60.
    T. Krüger, F. Varnik, D. Raabe, Phys. Rev. E 79 (4), 046704 (2009)ADSCrossRefGoogle Scholar
  61. 61.
    C.M. Pooley, K. Furtado, Phys. Rev. E 77, 046702 (2008)ADSCrossRefGoogle Scholar
  62. 62.
    I. Ginzburg, D. d’Humières, Phys. Rev. E 68, 066614 (2003)ADSMathSciNetCrossRefGoogle Scholar
  63. 63.
    K. Premnath, J. Abraham, J. Comput. Phys. 224, 539 (2007)ADSMathSciNetCrossRefGoogle Scholar
  64. 64.
    J. Latt, Hydrodynamic limit of lattice Boltzmann equations. Ph.D. thesis, University of Geneva (2007)Google Scholar
  65. 65.
    M. Rohde, D. Kandhai, J.J. Derksen, H.E.A. Van den Akker, Phys. Rev. 67, 066703 (2003)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Timm Krüger
    • 1
  • Halim Kusumaatmaja
    • 2
  • Alexandr Kuzmin
    • 3
  • Orest Shardt
    • 4
  • Goncalo Silva
    • 5
  • Erlend Magnus Viggen
    • 6
  1. 1.School of Engineering University of EdinburghEdinburghUK
  2. 2.Department of PhysicsDurham UniversityDurhamUK
  3. 3.Maya Heat Transfer TechnologiesWestmountCanada
  4. 4.Department of Mechanical and Aerospace EngineeringPrinceton UniversityPrincetonUSA
  5. 5.IDMEC/IST, University of LisbonLisbonPortugal
  6. 6.Acoustics Research Centre, SINTEF ICTTrondheimNorway

Personalised recommendations