# Boundary and Initial Conditions

• Timm Krüger
• Halim Kusumaatmaja
• Alexandr Kuzmin
• Orest Shardt
• Goncalo Silva
• Erlend Magnus Viggen
Chapter
Part of the Graduate Texts in Physics book series (GTP)

## Abstract

After reading this chapter, you will be familiar with the basics of lattice Boltzmann boundary conditions. After also having read Chap. , you will be able to implement fluid flow problems with various types of grid-aligned boundaries, representing both no-slip and open surfaces. From the boundary condition theory explained in this chapter together with the theory given in Chap. , you will be familiar with the basic theoretical tools used to analyse numerical lattice Boltzmann solutions. Additionally, you will understand how the details of the initial state of a simulation can be important and you will know how to compute a good initial simulation state.

## References

1. 1.
A.J. Chorin, J.E. Marsden, A Mathematical Introduction to Fluid Mechanics, 3rd edn. (Springer, New York, 2000)
2. 2.
P.A. Skordos, Phys. Rev. E 48 (6), 4823 (1993)
3. 3.
R. Mei, L.S. Luo, P. Lallemand, D. d’Humières, Comput. Fluids 35 (8-9), 855 (2006)
4. 4.
R. Haberman, Applied Partial Differential Equations: with Fourier Series and Boundary Value Problems (Pearson Prentice Hall, Upper Saddle River, 2004)Google Scholar
5. 5.
G.K. Batchelor, An Introduction to Fluid Dynamics (Cambridge University Press, Cambridge, 2000)
6. 6.
J. Anderson, Computational Fluid Dynamics (McGraw-Hill, New York, 1995)Google Scholar
7. 7.
H.K. Versteed, M. Malalasekera, An Introduction to Computational Fluid Dynamics, the Finite Volume Method (Prentice-Hall, Upper Saddle River, 1996)Google Scholar
8. 8.
S. Chen, D. Martinez, R. Mei, Phys. Fluids 8, 2527 (1996)
9. 9.
Z.L. Guo, C.G. Zheng, B.C. Shi, Chin. Phys. 11, 366 (2002)
10. 10.
Z.L. Guo, C.G. Zheng, B.C. Shi, Phys. Fluids 14, 2007 (2002)
11. 11.
M. Shankar, S. Sundar, Comput. Math. Appl. 57, 1312 (2009)
12. 12.
X. Kang, Q. Liao, X. Zhu, Y. Yang, Appl. Thermal Eng. 30, 1790 (2010)
13. 13.
I. Ginzbourg, D. d’Humières, J. Stat. Phys. 84, 927 (1996)
14. 14.
M. Junk, Z. Yang, Phys. Rev. E 72, 066701 (2005)
15. 15.
I. Ginzburg, D. d’Humières, Phys. Rev. E 68, 066614 (2003)
16. 16.
B. Chun, A.J.C. Ladd, Phys. Rev. E 75, 066705 (2007)
17. 17.
J.C.G. Verschaeve, B. Müller, J. Comput. Phys. 229, 6781 (2010)
18. 18.
J. Latt, B. Chopard, O. Malaspinas, M. Deville, A. Michler, Phys. Rev. E 77 (5), 056703 (2008)
19. 19.
M. Junk, Z. Yang, J. Stat. Phys. 121, 3 (2005)
20. 20.
J.C.G. Verschaeve, Phys. Rev. E 80, 036703 (2009)
21. 21.
I. Ginzbourg, P.M. Adler, J. Phys. II France 4 (2), 191 (1994)
22. 22.
A.J.C. Ladd, J. Fluid Mech. 271, 285 (1994)
23. 23.
X. He, Q. Zou, L.S. Luo, M. Dembo, J. Stat. Phys. 87 (1–2), 115 (1997)
24. 24.
M. Bouzidi, M. Firdaouss, P. Lallemand, Phys. Fluids 13, 3452 (2001)
25. 25.
D.R. Noble, Chen, J.G. Georgiadis, R.O. Buckius, Phys. Fluids 7, 203 (1995)Google Scholar
26. 26.
T. Inamuro, M. Yoshino, F. Ogino, Phys. Fluids 7, 2928 (1995)
27. 27.
Q. Zou, X. He, Phys. Fluids 9, 1591 (1997)
28. 28.
I. Halliday, L.A. Hammond, C.M. Care, A. Stevens, J. Phys. A Math. Gen. 35, 157 (2002)
29. 29.
A.P. Hollis, I.H.H.M. Care, J. Phys. A Math. Gen. 39, 10589 (2006)
30. 30.
I. Ginzburg, F. Verhaeghe, D. d’Humières, Commun. Comput. Phys. 3, 427 (2008)
31. 31.
I. Ginzburg, F. Verhaeghe, D. d’Humières, Commun. Comput. Phys. 3, 519 (2008)
32. 32.
C. Pan, L.S. Luo, C.T. Miller, Comput. Fluids 35 (8-9), 898 (2006)
33. 33.
S. Khirevich, I. Ginzburg, U. Tallarek, J. Comp. Phys. 281, 708 (2015)
34. 34.
R.S. Maier, R.S. Bernard, D.W. Grunau, Phys. Fluids 8, 1788 (1996)
35. 35.
S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond (Oxford University Press, Oxford, 2001)
36. 36.
M.C. Sukop, D.T. Thorne Jr., Lattice Boltzmann Modeling: An Introduction for Geoscientists and Engineers (Springer, New York, 2006)Google Scholar
37. 37.
S.H. Kim, H. Pitsch, Phys. Fluids 19, 108101 (2007)
38. 38.
Q. Zou, S. Hou, S. Chen, G.D. Doolen, J. Stat. Phys. 81, 35 (1995)
39. 39.
X. He, L.S. Luo, J. Stat. Phys. 88, 927 (1997)
40. 40.
S.V. Patankar, C.H. Liu, E.M. Sparrow, ASME J. Heat Transfer 99, 180 (1977)
41. 41.
J. Zhang, D.Y. Kwok, Phys. Rev. E 73, 047702 (2006)
42. 42.
O. Gräser, A. Grimm, Phys. Rev. E 82, 016702 (2010)
43. 43.
U. Frisch, B. Hasslacher, Y. Pomeau, Phys. Rev. Lett. 56 (14), 1505 (1986)
44. 44.
R. Cornubert, D. d’Humières, D. Levermore, Physica D 47, 241 (1991)
45. 45.
D.P. Ziegler, J. Stat. Phys. 71, 1171 (1993)
46. 46.
J. Hardy, Y. Pomeau, O. de Pazzis, J. Math. Phys. 14 (12), 1746 (1973)
47. 47.
J.P. Rivet, J.P. Boon, Lattice Gas Hydrodynamics (Cambridge University Press, Cambridge, 2001)
48. 48.
D.A. Wolf-Gladrow, Lattice-Gas Cellular Automata and Lattice Boltzmann Models (Springer, New York, 2005)
49. 49.
A.J.C. Ladd, R. Verberg, J. Stat. Phys. 104 (5–6), 1191 (2001)
50. 50.
A.J. Wagner, I. Pagonabarraga, J. Stat. Phys. 107, 531 (2002)
51. 51.
C. Aidun, Y. Lu, J. Stat. Phys. 81, 49 (1995)
52. 52.
C.K. Aidun, Y. Lu, E.J. Ding, J. Fluid Mech. 373, 287 (1998)
53. 53.
S. Krithivasan, S. Wahal, S. Ansumali, Phys. Rev. E 89, 033313 (2014)
54. 54.
N.Q. Nguyen, A.J.C. Ladd, Phys. Rev. E 66 (4), 046708 (2002)
55. 55.
X. Yin, G. Le, J. Zhang, Phys. Rev. E 86 (2), 026701 (2012)
56. 56.
O. Filippova, D. Hänel, J. Comput. Phys. 147, 219 (1998)
57. 57.
I. Ginzburg, J. Stat. Phys. 126, 157 (2007)
58. 58.
D. d’Humières, In Rarefied Gas Dynamics: Theory and Simulations, ed. B. Shizgal, D Weaver 159, 450 (1992)Google Scholar
59. 59.
P. Lallemand, L.S. Luo, Phys. Rev. E 61 (6), 6546 (2000)
60. 60.
D. d’Humières, I. Ginzburg, M. Krafczyk, P. Lallemand, L.S. Luo, Phil. Trans. R. Soc. Lond. A 360, 437 (2002)
61. 61.
A.J.C. Ladd, J. Fluid Mech. 271, 311 (1994)
62. 62.
L.S. Luo, W. Lia, X. Chen, Y. Peng, W. Zhang, Phys. Rev. E 83, 056710 (2011)
63. 63.
64. 64.
R.G.M. Van der Sman, Comput. Fluids 35, 849 (2006)
65. 65.
D. d’Humières, I. Ginzburg, Comput. Math. Appl. 58, 823 (2009)
66. 66.
I. Ginzburg, Commun. Comput. Phys. 11, 1439 (2012)
67. 67.
M. Hecht, J. Harting, J. Stat. Mech. Theory Exp. P, 01018 (2010)Google Scholar
68. 68.
H. Chen, Y. Qiao, C. Liu, Y. Li, B. Zhu, Y. Shi, D. Sun, K. Zhang, W. Lin, Appl. Math. Model 36, 2031 (2012)
69. 69.
S. Izquierdo, N. Fueyo, Phys. Rev. E 78, 046707 (2008)
70. 70.
S. Izquierdo, P. Martinez-Lera, N. Fueyo, Comput. Math. Appl. 58, 914 (2009)
71. 71.
A.P. Hollis, I. HalIiday, C.M. Care, J. Comput. Phys. 227, 8065 (2008)
72. 72.
S. Izquierdo, N. Fueyo, Phys. Rev. E 78 (4) (2008)Google Scholar
73. 73.
D. Heubes, A. Bartel, M. Ehrhardt, J. Comput. Appl. Math. 262, 51 (2014)
74. 74.
L. Talon, D. Bauer, D. Gland, H. Auradou, I. Ginzburg, Water Resour. Res. 48, W04526 (2012)
75. 75.
S. Hou, Q. Zou, S. Chen, G.D. Doolen, A.C. Cogley, J. Comput. Phys. 118, 329 (1995)
76. 76.
A.R. da Silva, Numerical studies of aeroacoustic aspects of wind instruments. Ph.D. thesis, McGill University, Montreal (2008)Google Scholar
77. 77.
G. Falcucci, M. Aureli, S. Ubertini, M. Porfiri, Phil. Trans. R. Soc. A 369, 2456 (2011).
78. 78.
P. Lallemand, L.S. Luo, J. Comput. Phys. 184 (2), 406 (2003)
79. 79.
S. Tao, J. Hu, Z. Guo, Comput. Fluids 133, 1 (2016)
80. 80.
R. Mei, D. Yu, W. Shyy, L.S. Luo, Phys. Rev. E 65 (4), 041203 (2002)
81. 81.
T. Krüger, F. Varnik, D. Raabe, Phys. Rev. E 79 (4), 046704 (2009)
82. 82.
W.A. Yong, L.S. Luo, Phys. Rev. E 86, 065701(R) (2012)Google Scholar
83. 83.
D. Yu, R. Mei, L.S. Luo, W. Shyy, Prog. Aerosp. Sci. 39, 329 (2003)
84. 84.
Y. Chen, H. Ohashi, M. Akiyama, Phys. Rev. E 50 (4), 2776 (1994)
85. 85.
P.C. Philipi, L.A. Hegele, L.O.E. Santos, R. Surmas, Phys. Rev. E 73, 056702 (2006)
86. 86.
A. Scagliarini, L. Biferale, M. Sbragaglia, K. Sugiyama, F. Toschi, Phys. Fluids 22, 055101 (2010)
87. 87.
X. Shan, X.F. Yuan, H. Chen, J. Fluid Mech. 550, 413 (2006)
88. 88.
S.H. Kim, H. Pitsch, I.D. Boyd, J. Comp. Phys. 227, 8655 (2008)
89. 89.
C.E. Colosqui, M.E. Kavousanakis, A.G. Papathanasiou, I.G. Kevrekidis, Phys. Rev. E 87, 013302 (2013)
90. 90.
J. Meng, Y. Zhang, J. Comp. Phys. 258, 601 (2014)
91. 91.
O. Malaspinas, B. Chopard, J. Latt, Comput. Fluids 49, 29 (2011)
92. 92.
Z. Guo, T.S. Zhao, Y. Shi, Phys. Rev. E 70 (6), 066706 (2004)
93. 93.
A.M.M. Artoli, A.G. Hoekstra, P.M.A. Sloot, Int. J. Mod. Phys. C 14 (6), 835 (2003)
94. 94.
A. Caiazzo, J. Stat. Phys. 121 (1–2), 37 (2005)
95. 95.
P. Van Leemput, M. Rheinlander, M. Junk, Comput. Math. Appl. 58 (5), 867 (2009)
96. 96.
J. Huang, H. Wu, W.A. Yong, Commun. Comput. Phys. 18 (02), 450 (2015)
97. 97.
D.J. Holdych, D.R. Noble, J.G. Georgiadis, R.O. Buckius, J. Comput. Phys. 193 (2), 595 (2004)
98. 98.
H. Xu, H. Luan, Y. He, W. Tao, Comput. Fluids 54, 92 (2012)
99. 99.
P.J. Dellar, Comput. Math. Appl. 65 (2), 129 (2013)
100. 100.
U.D. Schiller, Comput. Phys. Commun. 185 (10), 2586 (2014)

© Springer International Publishing Switzerland 2017

## Authors and Affiliations

• Timm Krüger
• 1
• Halim Kusumaatmaja
• 2
• Alexandr Kuzmin
• 3
• Orest Shardt
• 4
• Goncalo Silva
• 5
• Erlend Magnus Viggen
• 6
1. 1.School of Engineering University of EdinburghEdinburghUK
2. 2.Department of PhysicsDurham UniversityDurhamUK