Advertisement

Boundary and Initial Conditions

  • Timm Krüger
  • Halim Kusumaatmaja
  • Alexandr Kuzmin
  • Orest Shardt
  • Goncalo Silva
  • Erlend Magnus Viggen
Chapter
Part of the Graduate Texts in Physics book series (GTP)

Abstract

After reading this chapter, you will be familiar with the basics of lattice Boltzmann boundary conditions. After also having read Chap.  3, you will be able to implement fluid flow problems with various types of grid-aligned boundaries, representing both no-slip and open surfaces. From the boundary condition theory explained in this chapter together with the theory given in Chap.  4, you will be familiar with the basic theoretical tools used to analyse numerical lattice Boltzmann solutions. Additionally, you will understand how the details of the initial state of a simulation can be important and you will know how to compute a good initial simulation state.

References

  1. 1.
    A.J. Chorin, J.E. Marsden, A Mathematical Introduction to Fluid Mechanics, 3rd edn. (Springer, New York, 2000)zbMATHGoogle Scholar
  2. 2.
    P.A. Skordos, Phys. Rev. E 48 (6), 4823 (1993)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    R. Mei, L.S. Luo, P. Lallemand, D. d’Humières, Comput. Fluids 35 (8-9), 855 (2006)MathSciNetCrossRefGoogle Scholar
  4. 4.
    R. Haberman, Applied Partial Differential Equations: with Fourier Series and Boundary Value Problems (Pearson Prentice Hall, Upper Saddle River, 2004)Google Scholar
  5. 5.
    G.K. Batchelor, An Introduction to Fluid Dynamics (Cambridge University Press, Cambridge, 2000)CrossRefzbMATHGoogle Scholar
  6. 6.
    J. Anderson, Computational Fluid Dynamics (McGraw-Hill, New York, 1995)Google Scholar
  7. 7.
    H.K. Versteed, M. Malalasekera, An Introduction to Computational Fluid Dynamics, the Finite Volume Method (Prentice-Hall, Upper Saddle River, 1996)Google Scholar
  8. 8.
    S. Chen, D. Martinez, R. Mei, Phys. Fluids 8, 2527 (1996)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    Z.L. Guo, C.G. Zheng, B.C. Shi, Chin. Phys. 11, 366 (2002)ADSCrossRefGoogle Scholar
  10. 10.
    Z.L. Guo, C.G. Zheng, B.C. Shi, Phys. Fluids 14, 2007 (2002)ADSCrossRefGoogle Scholar
  11. 11.
    M. Shankar, S. Sundar, Comput. Math. Appl. 57, 1312 (2009)MathSciNetCrossRefGoogle Scholar
  12. 12.
    X. Kang, Q. Liao, X. Zhu, Y. Yang, Appl. Thermal Eng. 30, 1790 (2010)CrossRefGoogle Scholar
  13. 13.
    I. Ginzbourg, D. d’Humières, J. Stat. Phys. 84, 927 (1996)ADSCrossRefGoogle Scholar
  14. 14.
    M. Junk, Z. Yang, Phys. Rev. E 72, 066701 (2005)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    I. Ginzburg, D. d’Humières, Phys. Rev. E 68, 066614 (2003)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    B. Chun, A.J.C. Ladd, Phys. Rev. E 75, 066705 (2007)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    J.C.G. Verschaeve, B. Müller, J. Comput. Phys. 229, 6781 (2010)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    J. Latt, B. Chopard, O. Malaspinas, M. Deville, A. Michler, Phys. Rev. E 77 (5), 056703 (2008)ADSCrossRefGoogle Scholar
  19. 19.
    M. Junk, Z. Yang, J. Stat. Phys. 121, 3 (2005)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    J.C.G. Verschaeve, Phys. Rev. E 80, 036703 (2009)ADSCrossRefGoogle Scholar
  21. 21.
    I. Ginzbourg, P.M. Adler, J. Phys. II France 4 (2), 191 (1994)CrossRefGoogle Scholar
  22. 22.
    A.J.C. Ladd, J. Fluid Mech. 271, 285 (1994)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    X. He, Q. Zou, L.S. Luo, M. Dembo, J. Stat. Phys. 87 (1–2), 115 (1997)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    M. Bouzidi, M. Firdaouss, P. Lallemand, Phys. Fluids 13, 3452 (2001)ADSCrossRefGoogle Scholar
  25. 25.
    D.R. Noble, Chen, J.G. Georgiadis, R.O. Buckius, Phys. Fluids 7, 203 (1995)Google Scholar
  26. 26.
    T. Inamuro, M. Yoshino, F. Ogino, Phys. Fluids 7, 2928 (1995)ADSCrossRefGoogle Scholar
  27. 27.
    Q. Zou, X. He, Phys. Fluids 9, 1591 (1997)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    I. Halliday, L.A. Hammond, C.M. Care, A. Stevens, J. Phys. A Math. Gen. 35, 157 (2002)ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    A.P. Hollis, I.H.H.M. Care, J. Phys. A Math. Gen. 39, 10589 (2006)ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    I. Ginzburg, F. Verhaeghe, D. d’Humières, Commun. Comput. Phys. 3, 427 (2008)MathSciNetGoogle Scholar
  31. 31.
    I. Ginzburg, F. Verhaeghe, D. d’Humières, Commun. Comput. Phys. 3, 519 (2008)MathSciNetGoogle Scholar
  32. 32.
    C. Pan, L.S. Luo, C.T. Miller, Comput. Fluids 35 (8-9), 898 (2006)CrossRefGoogle Scholar
  33. 33.
    S. Khirevich, I. Ginzburg, U. Tallarek, J. Comp. Phys. 281, 708 (2015)ADSMathSciNetCrossRefGoogle Scholar
  34. 34.
    R.S. Maier, R.S. Bernard, D.W. Grunau, Phys. Fluids 8, 1788 (1996)ADSCrossRefGoogle Scholar
  35. 35.
    S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond (Oxford University Press, Oxford, 2001)zbMATHGoogle Scholar
  36. 36.
    M.C. Sukop, D.T. Thorne Jr., Lattice Boltzmann Modeling: An Introduction for Geoscientists and Engineers (Springer, New York, 2006)Google Scholar
  37. 37.
    S.H. Kim, H. Pitsch, Phys. Fluids 19, 108101 (2007)ADSCrossRefGoogle Scholar
  38. 38.
    Q. Zou, S. Hou, S. Chen, G.D. Doolen, J. Stat. Phys. 81, 35 (1995)ADSCrossRefGoogle Scholar
  39. 39.
    X. He, L.S. Luo, J. Stat. Phys. 88, 927 (1997)ADSMathSciNetCrossRefGoogle Scholar
  40. 40.
    S.V. Patankar, C.H. Liu, E.M. Sparrow, ASME J. Heat Transfer 99, 180 (1977)CrossRefGoogle Scholar
  41. 41.
    J. Zhang, D.Y. Kwok, Phys. Rev. E 73, 047702 (2006)ADSCrossRefGoogle Scholar
  42. 42.
    O. Gräser, A. Grimm, Phys. Rev. E 82, 016702 (2010)ADSCrossRefGoogle Scholar
  43. 43.
    U. Frisch, B. Hasslacher, Y. Pomeau, Phys. Rev. Lett. 56 (14), 1505 (1986)ADSCrossRefGoogle Scholar
  44. 44.
    R. Cornubert, D. d’Humières, D. Levermore, Physica D 47, 241 (1991)ADSMathSciNetCrossRefGoogle Scholar
  45. 45.
    D.P. Ziegler, J. Stat. Phys. 71, 1171 (1993)ADSCrossRefGoogle Scholar
  46. 46.
    J. Hardy, Y. Pomeau, O. de Pazzis, J. Math. Phys. 14 (12), 1746 (1973)ADSCrossRefGoogle Scholar
  47. 47.
    J.P. Rivet, J.P. Boon, Lattice Gas Hydrodynamics (Cambridge University Press, Cambridge, 2001)CrossRefzbMATHGoogle Scholar
  48. 48.
    D.A. Wolf-Gladrow, Lattice-Gas Cellular Automata and Lattice Boltzmann Models (Springer, New York, 2005)zbMATHGoogle Scholar
  49. 49.
    A.J.C. Ladd, R. Verberg, J. Stat. Phys. 104 (5–6), 1191 (2001)ADSMathSciNetCrossRefGoogle Scholar
  50. 50.
    A.J. Wagner, I. Pagonabarraga, J. Stat. Phys. 107, 531 (2002)CrossRefGoogle Scholar
  51. 51.
    C. Aidun, Y. Lu, J. Stat. Phys. 81, 49 (1995)ADSCrossRefGoogle Scholar
  52. 52.
    C.K. Aidun, Y. Lu, E.J. Ding, J. Fluid Mech. 373, 287 (1998)ADSCrossRefGoogle Scholar
  53. 53.
    S. Krithivasan, S. Wahal, S. Ansumali, Phys. Rev. E 89, 033313 (2014)ADSCrossRefGoogle Scholar
  54. 54.
    N.Q. Nguyen, A.J.C. Ladd, Phys. Rev. E 66 (4), 046708 (2002)ADSCrossRefGoogle Scholar
  55. 55.
    X. Yin, G. Le, J. Zhang, Phys. Rev. E 86 (2), 026701 (2012)ADSCrossRefGoogle Scholar
  56. 56.
    O. Filippova, D. Hänel, J. Comput. Phys. 147, 219 (1998)ADSCrossRefGoogle Scholar
  57. 57.
    I. Ginzburg, J. Stat. Phys. 126, 157 (2007)ADSMathSciNetCrossRefGoogle Scholar
  58. 58.
    D. d’Humières, In Rarefied Gas Dynamics: Theory and Simulations, ed. B. Shizgal, D Weaver 159, 450 (1992)Google Scholar
  59. 59.
    P. Lallemand, L.S. Luo, Phys. Rev. E 61 (6), 6546 (2000)ADSMathSciNetCrossRefGoogle Scholar
  60. 60.
    D. d’Humières, I. Ginzburg, M. Krafczyk, P. Lallemand, L.S. Luo, Phil. Trans. R. Soc. Lond. A 360, 437 (2002)ADSCrossRefGoogle Scholar
  61. 61.
    A.J.C. Ladd, J. Fluid Mech. 271, 311 (1994)ADSMathSciNetCrossRefGoogle Scholar
  62. 62.
    L.S. Luo, W. Lia, X. Chen, Y. Peng, W. Zhang, Phys. Rev. E 83, 056710 (2011)ADSCrossRefGoogle Scholar
  63. 63.
    A.A. Mohamad, S. Succi, Eur. Phys. J. 171, 213 (2009)Google Scholar
  64. 64.
    R.G.M. Van der Sman, Comput. Fluids 35, 849 (2006)CrossRefGoogle Scholar
  65. 65.
    D. d’Humières, I. Ginzburg, Comput. Math. Appl. 58, 823 (2009)MathSciNetCrossRefGoogle Scholar
  66. 66.
    I. Ginzburg, Commun. Comput. Phys. 11, 1439 (2012)CrossRefGoogle Scholar
  67. 67.
    M. Hecht, J. Harting, J. Stat. Mech. Theory Exp. P, 01018 (2010)Google Scholar
  68. 68.
    H. Chen, Y. Qiao, C. Liu, Y. Li, B. Zhu, Y. Shi, D. Sun, K. Zhang, W. Lin, Appl. Math. Model 36, 2031 (2012)MathSciNetCrossRefGoogle Scholar
  69. 69.
    S. Izquierdo, N. Fueyo, Phys. Rev. E 78, 046707 (2008)ADSCrossRefGoogle Scholar
  70. 70.
    S. Izquierdo, P. Martinez-Lera, N. Fueyo, Comput. Math. Appl. 58, 914 (2009)MathSciNetCrossRefGoogle Scholar
  71. 71.
    A.P. Hollis, I. HalIiday, C.M. Care, J. Comput. Phys. 227, 8065 (2008)ADSMathSciNetCrossRefGoogle Scholar
  72. 72.
    S. Izquierdo, N. Fueyo, Phys. Rev. E 78 (4) (2008)Google Scholar
  73. 73.
    D. Heubes, A. Bartel, M. Ehrhardt, J. Comput. Appl. Math. 262, 51 (2014)MathSciNetCrossRefGoogle Scholar
  74. 74.
    L. Talon, D. Bauer, D. Gland, H. Auradou, I. Ginzburg, Water Resour. Res. 48, W04526 (2012)ADSCrossRefGoogle Scholar
  75. 75.
    S. Hou, Q. Zou, S. Chen, G.D. Doolen, A.C. Cogley, J. Comput. Phys. 118, 329 (1995)ADSCrossRefGoogle Scholar
  76. 76.
    A.R. da Silva, Numerical studies of aeroacoustic aspects of wind instruments. Ph.D. thesis, McGill University, Montreal (2008)Google Scholar
  77. 77.
    G. Falcucci, M. Aureli, S. Ubertini, M. Porfiri, Phil. Trans. R. Soc. A 369, 2456 (2011).ADSMathSciNetCrossRefGoogle Scholar
  78. 78.
    P. Lallemand, L.S. Luo, J. Comput. Phys. 184 (2), 406 (2003)ADSMathSciNetCrossRefGoogle Scholar
  79. 79.
    S. Tao, J. Hu, Z. Guo, Comput. Fluids 133, 1 (2016)MathSciNetCrossRefGoogle Scholar
  80. 80.
    R. Mei, D. Yu, W. Shyy, L.S. Luo, Phys. Rev. E 65 (4), 041203 (2002)ADSCrossRefGoogle Scholar
  81. 81.
    T. Krüger, F. Varnik, D. Raabe, Phys. Rev. E 79 (4), 046704 (2009)ADSCrossRefGoogle Scholar
  82. 82.
    W.A. Yong, L.S. Luo, Phys. Rev. E 86, 065701(R) (2012)Google Scholar
  83. 83.
    D. Yu, R. Mei, L.S. Luo, W. Shyy, Prog. Aerosp. Sci. 39, 329 (2003)CrossRefGoogle Scholar
  84. 84.
    Y. Chen, H. Ohashi, M. Akiyama, Phys. Rev. E 50 (4), 2776 (1994)ADSCrossRefGoogle Scholar
  85. 85.
    P.C. Philipi, L.A. Hegele, L.O.E. Santos, R. Surmas, Phys. Rev. E 73, 056702 (2006)ADSMathSciNetCrossRefGoogle Scholar
  86. 86.
    A. Scagliarini, L. Biferale, M. Sbragaglia, K. Sugiyama, F. Toschi, Phys. Fluids 22, 055101 (2010)ADSCrossRefGoogle Scholar
  87. 87.
    X. Shan, X.F. Yuan, H. Chen, J. Fluid Mech. 550, 413 (2006)ADSMathSciNetCrossRefGoogle Scholar
  88. 88.
    S.H. Kim, H. Pitsch, I.D. Boyd, J. Comp. Phys. 227, 8655 (2008)ADSCrossRefGoogle Scholar
  89. 89.
    C.E. Colosqui, M.E. Kavousanakis, A.G. Papathanasiou, I.G. Kevrekidis, Phys. Rev. E 87, 013302 (2013)ADSCrossRefGoogle Scholar
  90. 90.
    J. Meng, Y. Zhang, J. Comp. Phys. 258, 601 (2014)ADSMathSciNetCrossRefGoogle Scholar
  91. 91.
    O. Malaspinas, B. Chopard, J. Latt, Comput. Fluids 49, 29 (2011)MathSciNetCrossRefGoogle Scholar
  92. 92.
    Z. Guo, T.S. Zhao, Y. Shi, Phys. Rev. E 70 (6), 066706 (2004)ADSCrossRefGoogle Scholar
  93. 93.
    A.M.M. Artoli, A.G. Hoekstra, P.M.A. Sloot, Int. J. Mod. Phys. C 14 (6), 835 (2003)ADSCrossRefGoogle Scholar
  94. 94.
    A. Caiazzo, J. Stat. Phys. 121 (1–2), 37 (2005)ADSMathSciNetCrossRefGoogle Scholar
  95. 95.
    P. Van Leemput, M. Rheinlander, M. Junk, Comput. Math. Appl. 58 (5), 867 (2009)MathSciNetCrossRefGoogle Scholar
  96. 96.
    J. Huang, H. Wu, W.A. Yong, Commun. Comput. Phys. 18 (02), 450 (2015)MathSciNetCrossRefGoogle Scholar
  97. 97.
    D.J. Holdych, D.R. Noble, J.G. Georgiadis, R.O. Buckius, J. Comput. Phys. 193 (2), 595 (2004)ADSMathSciNetCrossRefGoogle Scholar
  98. 98.
    H. Xu, H. Luan, Y. He, W. Tao, Comput. Fluids 54, 92 (2012)MathSciNetCrossRefGoogle Scholar
  99. 99.
    P.J. Dellar, Comput. Math. Appl. 65 (2), 129 (2013)MathSciNetCrossRefGoogle Scholar
  100. 100.
    U.D. Schiller, Comput. Phys. Commun. 185 (10), 2586 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Timm Krüger
    • 1
  • Halim Kusumaatmaja
    • 2
  • Alexandr Kuzmin
    • 3
  • Orest Shardt
    • 4
  • Goncalo Silva
    • 5
  • Erlend Magnus Viggen
    • 6
  1. 1.School of Engineering University of EdinburghEdinburghUK
  2. 2.Department of PhysicsDurham UniversityDurhamUK
  3. 3.Maya Heat Transfer TechnologiesWestmountCanada
  4. 4.Department of Mechanical and Aerospace EngineeringPrinceton UniversityPrincetonUSA
  5. 5.IDMEC/IST, University of LisbonLisbonPortugal
  6. 6.Acoustics Research Centre, SINTEF ICTTrondheimNorway

Personalised recommendations