Advertisement

The Lattice Boltzmann Equation

  • Timm Krüger
  • Halim Kusumaatmaja
  • Alexandr Kuzmin
  • Orest Shardt
  • Goncalo Silva
  • Erlend Magnus Viggen
Chapter
Part of the Graduate Texts in Physics book series (GTP)

Abstract

After reading this chapter, you will know the basics of the lattice Boltzmann method, how it can be used to simulate fluids, and how to implement it in code. You will have insight into the derivation of the lattice Boltzmann equation, having seen how the continuous Boltzmann equation is discretised in velocity space through Hermite series expansion, before being discretised in physical space and time through the method of characteristics. In particular, you will be familiar with the various simple sets of velocity vectors that are available, and how the discrete BGK collision model is applied.

References

  1. 1.
    D.A. Wolf-Gladrow, Lattice-Gas Cellular Automata and Lattice Boltzmann Models (Springer, New York, 2005)zbMATHGoogle Scholar
  2. 2.
    X. He, L.S. Luo, Phys. Rev. E 56 (6), 6811 (1997)ADSCrossRefGoogle Scholar
  3. 3.
    X. Shan, X.F. Yuan, H. Chen, J. Fluid Mech. 550, 413 (2006)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    K. Dullemond, K. Peeters, Introduction to Tensor Calculus. http://www.ita.uni-heidelberg.de/~dullemond/lectures/tensor/tensor.pdf (1991–2010)
  5. 5.
    J. Simmonds, A Brief on Tensor Analysis (Springer, New York, 1994)CrossRefzbMATHGoogle Scholar
  6. 6.
    H. Grad, Commun. Pure Appl. Math. 2 (4), 325 (1949)MathSciNetCrossRefGoogle Scholar
  7. 7.
    N. Wiener, The Fourier Integral and Certain of Its Applications (Cambridge University Press, Cambridge, 1933)zbMATHGoogle Scholar
  8. 8.
    D. d’Humières, I. Ginzburg, M. Krafczyk, P. Lallemand, L.S. Luo, Phil. Trans. R. Soc. Lond. A 360, 437 (2002)ADSCrossRefGoogle Scholar
  9. 9.
    A. Kuzmin, A. Mohamad, S. Succi, Int. J. Mod. Phys. C 19 (6), 875 (2008)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    I. Ginzburg, F. Verhaeghe, D. d’Humières, Commun. Comput. Phys. 3, 427 (2008)MathSciNetGoogle Scholar
  11. 11.
    P. Dellar, Phys. Rev. E 64 (3) (2001)Google Scholar
  12. 12.
    Z. Guo, C. Zheng, B. Shi, T. Zhao, Phys. Rev. E 75 (036704), 1 (2007)Google Scholar
  13. 13.
    G. Uhlenbeck, G. Ford, Lectures in Statistical Mechanics. Lectures in applied mathematics (American Mathematical Society, Providence, 1974)Google Scholar
  14. 14.
    S. Chapman, T.G. Cowling, The Mathematical Theory of Non-uniform Gases, 2nd edn. (Cambridge University Press, Cambridge, 1952)zbMATHGoogle Scholar
  15. 15.
    Y.H. Qian, D. d’Humières, P. Lallemand, Europhys. Lett. 17 (6), 479 (1992)ADSCrossRefGoogle Scholar
  16. 16.
    U. Frisch, B. Hasslacher, Y. Pomeau, Phys. Rev. Lett. 56 (14), 1505 (1986)ADSCrossRefGoogle Scholar
  17. 17.
    J. Latt, Hydrodynamic limit of lattice Boltzmann equations. Ph.D. thesis, University of Geneva (2007)Google Scholar
  18. 18.
    G. Silva, V. Semiao, J. Comput. Phys. 269, 259 (2014)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    E.M. Viggen, The lattice Boltzmann method: Fundamentals and acoustics. Ph.D. thesis, Norwegian University of Science and Technology (NTNU), Trondheim (2014)Google Scholar
  20. 20.
    I. Ginzburg, D. d’Humières, A. Kuzmin, J. Stat. Phys. 139, 1090 (2010)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    W.P. Yudistiawan, S.K. Kwak, D.V. Patil, S. Ansumali, Phys. Rev. E 82 (4), 046701 (2010)ADSCrossRefGoogle Scholar
  22. 22.
    S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond (Oxford University Press, Oxford, 2001)zbMATHGoogle Scholar
  23. 23.
    A.T. White, C.K. Chong, J. Comput. Phys. 230 (16), 6367 (2011)ADSCrossRefGoogle Scholar
  24. 24.
    S.K. Kang, Y.A. Hassan, J. Comput. Phys. 232 (1), 100 (2013)ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    K. Suga, Y. Kuwata, K. Takashima, R. Chikasue, Comput. Math. Appl. 69 (6), 518 (2015)MathSciNetCrossRefGoogle Scholar
  26. 26.
    D. d’Humières, M. Bouzidi, P. Lallemand, Phys. Rev. E 63 (6), 066702 (2001)CrossRefGoogle Scholar
  27. 27.
    J. Tölke M. Krafczyk, Int. J. Comp. Fluid Dyn. 22 (7), 443 (2008)CrossRefGoogle Scholar
  28. 28.
    I. Karlin, P. Asinari, Physica A 389 (8), 1530 (2010)ADSCrossRefGoogle Scholar
  29. 29.
    S. Ubertini, S. Succi, Prog. Comput. Fluid Dyn. 5 (1/2), 85 (2005)MathSciNetCrossRefGoogle Scholar
  30. 30.
    M.K. Misztal, A. Hernandez-Garcia, R. Matin, H.O. Sørensen, J. Mathiesen, J. Comput. Phys. 297, 316 (2015)ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    D. Lagrava, Revisiting grid refinement algorithms for the lattice Boltzmann method. Ph.D. thesis, University of Geneva (2012)Google Scholar
  32. 32.
    S. Ubertini, P. Asinari, S. Succi, Phys. Rev. E 81 (1), 016311 (2010)ADSCrossRefGoogle Scholar
  33. 33.
    J. Hoffmann, Numerical Methods for Engineers and Scientists (McGraw-Hill, New York, 1992)Google Scholar
  34. 34.
    H. Xi, G. Peng, S.H. Chou, Phys. Rev. E 59 (5), 6202 (1999)ADSCrossRefGoogle Scholar
  35. 35.
    O. Filippova, D. Hanel, J. Comput. Phys. 147, 219 (1998)ADSCrossRefGoogle Scholar
  36. 36.
    S. Ubertini, S. Succi, Commun. Comput. Phys 3, 342 (2008)MathSciNetGoogle Scholar
  37. 37.
    S. Ubertini, S. Succi, G. Bella, Phil. Trans. R. Soc. Lond. A 362, 1763 (2004)ADSMathSciNetCrossRefGoogle Scholar
  38. 38.
    X. He, S. Chen, G.D. Doolen, J. Comput. Phys. 146 (1), 282 (1998)ADSMathSciNetCrossRefGoogle Scholar
  39. 39.
    J.D. Sterling, S. Chen, J. Comput. Phys. 123 (1), 196 (1996)ADSCrossRefGoogle Scholar
  40. 40.
    P.L. Bhatnagar, E.P. Gross, M. Krook, Phys. Rev. 94, 511 (1954)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Timm Krüger
    • 1
  • Halim Kusumaatmaja
    • 2
  • Alexandr Kuzmin
    • 3
  • Orest Shardt
    • 4
  • Goncalo Silva
    • 5
  • Erlend Magnus Viggen
    • 6
  1. 1.School of Engineering University of EdinburghEdinburghUK
  2. 2.Department of PhysicsDurham UniversityDurhamUK
  3. 3.Maya Heat Transfer TechnologiesWestmountCanada
  4. 4.Department of Mechanical and Aerospace EngineeringPrinceton UniversityPrincetonUSA
  5. 5.IDMEC/IST, University of LisbonLisbonPortugal
  6. 6.Acoustics Research Centre, SINTEF ICTTrondheimNorway

Personalised recommendations