Advertisement

Numerical Methods for Fluids

  • Timm Krüger
  • Halim Kusumaatmaja
  • Alexandr Kuzmin
  • Orest Shardt
  • Goncalo Silva
  • Erlend Magnus Viggen
Chapter
Part of the Graduate Texts in Physics book series (GTP)

Abstract

After reading this chapter, you will have insight into a number of other fluid simulation methods and their advantages and disadvantages. These methods are divided into two categories. First, conventional numerical methods based on discretising the equations of fluid mechanics, such as finite difference, finite volume, and finite element methods. Second, methods that are based on microscopic, mesoscopic, or macroscopic particles, such as molecular dynamics, lattice gas models, and multi-particle collision dynamics. You will know where the particle-based lattice Boltzmann method fits in the landscape of fluid simulation methods, and you will have an understanding of the advantages and disadvantages of the lattice Boltzmann method compared to other methods.

Keywords

Computational Fluid Dynamic Finite Volume Method Lattice Boltzmann Method Finite Difference Method Direct Simulation Monte Carlo 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    R.J. LeVeque, Finite Difference Methods for Ordinary and Partial Differential Equations: Steady State and Time Dependent Problems (SIAM, Philadelphia, 2007)CrossRefzbMATHGoogle Scholar
  2. 2.
    C. Pozrikidis, A Practical Guide to Boundary Element Methods with the Software Library BEMLIB (CRC Press, Boca Raton, 2002)CrossRefzbMATHGoogle Scholar
  3. 3.
    C. Canuto, M.Y. Hussaini, A.M. Quarteroni, A. Thomas Jr, et al., Spectral Methods in Fluid Dynamics (Springer Science & Business Media, New York, 2012)zbMATHGoogle Scholar
  4. 4.
    S.V. Patankar, Numerical Heat Transfer and Fluid Flow (Taylor & Francis, Washington, DC, 1980)zbMATHGoogle Scholar
  5. 5.
    J.H. Ferziger, M. Peric, A. Leonard, Computational Methods for Fluid Dynamics, vol. 50, 3rd edn. (Springer, New York, 2002)Google Scholar
  6. 6.
    R.J. LeVeque, Finite-Volume Methods for Hyperbolic Problems. Cambridge Texts in Applied Mathematics (Cambridge University Press, Cambridge, 2004)Google Scholar
  7. 7.
    H.K. Versteeg, W. Malalasekera, An Introduction to Computational Fluid Dynamics: The Finite Volume Method, 2nd edn. (Pearson Education, Upper Saddle River, 2007)Google Scholar
  8. 8.
    O.C. Zienkiewicz, R.L. Taylor, P. Nithiarasu, The Finite Element Method for Fluid Dynamics, 7th edn. (Butterworth-Heinemann, Oxford, 2014)zbMATHGoogle Scholar
  9. 9.
    C.A.J. Fletcher, Computational Techniques for Fluid Dynamics, vol. 2 (Springer, New York, 1988)CrossRefzbMATHGoogle Scholar
  10. 10.
    D. Frenkel, B. Smit, Understanding Molecular Simulation: From Algorithms to Applications, 2nd edn. Computational science series (Academic Press, San Diego, 2002)Google Scholar
  11. 11.
    M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids. Oxford Science Publications (Clarendon Press, Oxford, 1989)zbMATHGoogle Scholar
  12. 12.
    M. Karplus, J.A. McCammon, Nat. Struct. Biol. 9 (9), 646 (2002)CrossRefGoogle Scholar
  13. 13.
    J. Hardy, Y. Pomeau, O. de Pazzis, J. Math. Phys. 14 (12), 1746 (1973)ADSCrossRefGoogle Scholar
  14. 14.
    U. Frisch, B. Hasslacher, Y. Pomeau, Phys. Rev. Lett. 56 (14), 1505 (1986)ADSCrossRefGoogle Scholar
  15. 15.
    S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond (Oxford University Press, Oxford, 2001)zbMATHGoogle Scholar
  16. 16.
    J.P. Rivet, J.P. Boon, Lattice Gas Hydrodynamics (Cambridge University Press, Cambridge, 2001)CrossRefzbMATHGoogle Scholar
  17. 17.
    D.A. Wolf-Gladrow, Lattice-Gas Cellular Automata and Lattice Boltzmann Models (Springer, New York, 2005)zbMATHGoogle Scholar
  18. 18.
    G.R. McNamara, G. Zanetti, Phys. Rev. Lett. 61 (20), 2332 (1988)ADSCrossRefGoogle Scholar
  19. 19.
    F.J. Higuera, S. Succi, R. Benzi, Europhys. Lett. 9 (4), 345 (1989)ADSCrossRefGoogle Scholar
  20. 20.
    F.J. Higuera, J. Jimenez, Europhys. Lett. 9 (7), 663 (1989)ADSCrossRefGoogle Scholar
  21. 21.
    X. He, L.S. Luo, Phys. Rev. E 56 (6), 6811 (1997)ADSCrossRefGoogle Scholar
  22. 22.
    P.J. Hoogerbrugge, J.M.V.A. Koelman, Europhys. Lett. 19 (3), 155 (1992)ADSCrossRefGoogle Scholar
  23. 23.
    P. Español, P. Warren, Europhys. Lett. 30 (4), 191 (1995)ADSCrossRefGoogle Scholar
  24. 24.
    M.B. Liu, G.R. Liu, L.W. Zhou, J.Z. Chang, Arch. Computat. Methods Eng. 22 (4), 529 (2015)MathSciNetCrossRefGoogle Scholar
  25. 25.
    P. Español, M. Revenga, Phys. Rev. E 67 (2), 026705 (2003)ADSCrossRefGoogle Scholar
  26. 26.
    R.D. Groot, P.B. Warren, J. Chem. Phys. 107 (11), 4423 (1997)ADSCrossRefGoogle Scholar
  27. 27.
    I. Pagonabarraga, M.H.J. Hagen, D. Frenkel, Europhys. Lett. 42 (4), 377 (1998)ADSCrossRefGoogle Scholar
  28. 28.
    A. Malevanets, R. Kapral, J. Chem. Phys. 110 (17), 8605 (1999)ADSCrossRefGoogle Scholar
  29. 29.
    A. Malevanets, R. Kapral, J. Chem. Phys. 112 (16), 7260 (2000)ADSCrossRefGoogle Scholar
  30. 30.
    H. Noguchi, N. Kikuchi, G. Gompper, Europhys. Lett. 78 (1), 10005 (2007)ADSCrossRefGoogle Scholar
  31. 31.
    G. Gompper, T. Ihle, D.M. Kroll, R.G. Winkler, in Advanced Computer Simulation Approaches for Soft Matter Sciences III, Advances in Polymer Science (Springer, Berlin, Heidelberg, 2008), pp. 1–87Google Scholar
  32. 32.
    T. Ihle, E. Tüzel, D.M. Kroll, Europhys. Lett. 73 (5), 664 (2006)ADSCrossRefGoogle Scholar
  33. 33.
    E. Tüzel, G. Pan, T. Ihle, D.M. Kroll, Europhys. Lett. 80 (4), 40010 (2007)CrossRefGoogle Scholar
  34. 34.
    Y.G. Tao, I.O. Götze, G. Gompper, J. Chem. Phys. 128 (14), 144902 (2008)ADSCrossRefGoogle Scholar
  35. 35.
    R. Kapral, in Advances in Chemical Physics, ed. by S.A. Rice (Wiley, New York, 2008), p. 89–146Google Scholar
  36. 36.
    E. Westphal, S.P. Singh, C.C. Huang, G. Gompper, R.G. Winkler, Comput. Phys. Commun. 185 (2), 495 (2014)ADSCrossRefGoogle Scholar
  37. 37.
    A. Malevanets, J.M. Yeomans, Europhys. Lett. 52 (2), 231 (2000)ADSCrossRefGoogle Scholar
  38. 38.
    T. Ihle, D.M. Kroll, Phys. Rev. E 67 (6), 066706 (2003)ADSCrossRefGoogle Scholar
  39. 39.
    E. Allahyarov, G. Gompper, Phys. Rev. E 66 (3), 036702 (2002)ADSCrossRefGoogle Scholar
  40. 40.
    J.K. Whitmer, E. Luijten, J. Phys. Condens. Matter 22 (10), 104106 (2010)ADSCrossRefGoogle Scholar
  41. 41.
    M. Ripoll, R.G. Winkler, G. Gompper, Eur. Phys. J. E 23 (4), 349 (2007)CrossRefGoogle Scholar
  42. 42.
    N. Kikuchi, C.M. Pooley, J.F. Ryder, J.M. Yeomans, J. Chem. Phys. 119 (12), 6388 (2003)ADSCrossRefGoogle Scholar
  43. 43.
    T. Ihle, E. Tözel, D.M. Kroll, Phys. Rev. E 72 (4), 046707 (2005)ADSCrossRefGoogle Scholar
  44. 44.
    C.M. Pooley, J.M. Yeomans, J. Phys. Chem. B 109 (14), 6505 (2005)CrossRefGoogle Scholar
  45. 45.
    G.A. Bird, Phys. Fluids 6, 1518 (1963)ADSCrossRefGoogle Scholar
  46. 46.
    G.A. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows (Claredon, Oxford, 1994)Google Scholar
  47. 47.
    C. Shen, Rarefied gas dynamics: Fundamentals, Simulations and Micro Flows (Springer, New York, 2005)CrossRefGoogle Scholar
  48. 48.
    G.A. Bird, Ann. Rev. Fluid Mech. 10, 11 (1978)ADSCrossRefGoogle Scholar
  49. 49.
    E.S. Oran, C.K. Oh, B.Z. Cybyk, Ann. Rev. Fluid Mech. 30, 403 (1998)ADSMathSciNetCrossRefGoogle Scholar
  50. 50.
    G.A. Bird, Comp. Math. Appl. 35, 1 (1998)MathSciNetCrossRefGoogle Scholar
  51. 51.
    W. Wagner, J. Stat. Phys. 66, 1011 (1992)ADSCrossRefGoogle Scholar
  52. 52.
    D. Violeau, Fluid Mechanics and the SPH Method: Theory and Applications, 1st edn. (Oxford University Press, Oxford, 2012)CrossRefzbMATHGoogle Scholar
  53. 53.
    G.R. Liu, M.B. Liu, Smoothed Particle Hydrodynamics: A Meshfree Particle Method (World Scientific Publishing, Singapore, 2003)CrossRefzbMATHGoogle Scholar
  54. 54.
    P.J. Frey, P.L. George, Mesh Generation: Application to Finite Elements (Wiley, Hoboken, 2008)CrossRefzbMATHGoogle Scholar
  55. 55.
    Z. Wang, Prog. Aerosp. Sci. 43 (1–3), 1 (2007)CrossRefGoogle Scholar
  56. 56.
    R.R. Nourgaliev, T.N. Dinh, T.G. Theofanous, D. Joseph, Int. J. Multiphas. Flow 29 (1), 117 (2003)CrossRefGoogle Scholar
  57. 57.
    S. Geller, M. Krafczyk, J. Tölke, S. Turek, J. Hron, Comput. Fluids 35 (8-9), 888 (2006)CrossRefGoogle Scholar
  58. 58.
    M. Yoshino, T. Inamuro, Int. J. Num. Meth. Fluids 43 (2), 183 (2003)CrossRefGoogle Scholar
  59. 59.
    B. Dünweg, A.J.C. Ladd, in Advances in Polymer Science (Springer, Berlin, Heidelberg, 2008), pp. 1–78Google Scholar
  60. 60.
    A.J.C. Ladd, J. Fluid Mech. 271, 285 (1994)ADSMathSciNetCrossRefGoogle Scholar
  61. 61.
    R. Adhikari, K. Stratford, M.E. Cates, A.J. Wagner, Europhys. Lett. 71 (3), 473 (2005)ADSCrossRefGoogle Scholar
  62. 62.
    B. Dünweg, U.D. Schiller, A.J.C. Ladd, Phys. Rev. E 76 (3), 036704 (2007)ADSMathSciNetCrossRefGoogle Scholar
  63. 63.
    M. Gross, M.E. Cates, F. Varnik, R. Adhikari, J. Stat. Mech. 2011 (03), P03030 (2011)CrossRefGoogle Scholar
  64. 64.
    D. Belardinelli, M. Sbragaglia, L. Biferale, M. Gross, F. Varnik, Phys. Rev. E 91 (2), 023313 (2015)ADSMathSciNetCrossRefGoogle Scholar
  65. 65.
    E.M. Viggen, The lattice Boltzmann method: Fundamentals and acoustics. Ph.D. thesis, Norwegian University of Science and Technology (NTNU), Trondheim (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Timm Krüger
    • 1
  • Halim Kusumaatmaja
    • 2
  • Alexandr Kuzmin
    • 3
  • Orest Shardt
    • 4
  • Goncalo Silva
    • 5
  • Erlend Magnus Viggen
    • 6
  1. 1.School of Engineering University of EdinburghEdinburghUK
  2. 2.Department of PhysicsDurham UniversityDurhamUK
  3. 3.Maya Heat Transfer TechnologiesWestmountCanada
  4. 4.Department of Mechanical and Aerospace EngineeringPrinceton UniversityPrincetonUSA
  5. 5.IDMEC/IST, University of LisbonLisbonPortugal
  6. 6.Acoustics Research Centre, SINTEF ICTTrondheimNorway

Personalised recommendations