Advertisement

Sound Waves

  • Timm Krüger
  • Halim Kusumaatmaja
  • Alexandr Kuzmin
  • Orest Shardt
  • Goncalo Silva
  • Erlend Magnus Viggen
Chapter
Part of the Graduate Texts in Physics book series (GTP)

Abstract

After reading this chapter, you will understand the fundamentals of sound propagation in a viscous fluid as they apply to lattice Boltzmann simulations, and you will know why sound waves in these simulations do not necessarily propagate according to the “speed of sound” lattice constant. You will have insight into why sound waves can appear spontaneously in lattice Boltzmann simulations and know how to create sound waves artificially in your simulations. Additionally, you will know about special boundary conditions that minimise the reflection of sound waves back into the system, allowing you to avoid reflected sound waves polluting the simulation results.

Keywords

Sound Wave Sound Source Helmholtz Equation Lattice Boltzmann Method Forced Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    J.M. Buick, C.A. Greated, D.M. Campbell, Europhys. Lett. 43 (3), 235 (1998)ADSCrossRefGoogle Scholar
  2. 2.
    A. Wilde, Anwendung des Lattice-Boltzmann-Verfahrens zur Berechnung strömungsakustischer Probleme. Ph.D. thesis, TU Dresden (2007)Google Scholar
  3. 3.
    S. Marié, Etude de la méthode Boltzmann sur réseau pour les simulations en aéroacoustique. Ph.D. thesis, Institut Jean le Rond d’Alembert, Paris (2008)Google Scholar
  4. 4.
    A.R. da Silva, Numerical studies of aeroacoustic aspects of wind instruments. Ph.D. thesis, McGill University, Montreal (2008)Google Scholar
  5. 5.
    E.M. Viggen, The lattice Boltzmann method with applications in acoustics. Master’s thesis, Norwegian University of Science and Technology (NTNU), Trondheim (2009)Google Scholar
  6. 6.
    M. Schlaffer, Non-reflecting boundary conditions for the lattice Boltzmann method. Ph.D. thesis, Technical University of Munich (2013)Google Scholar
  7. 7.
    E.M. Viggen, The lattice Boltzmann method: Fundamentals and acoustics. Ph.D. thesis, Norwegian University of Science and Technology (NTNU), Trondheim (2014)Google Scholar
  8. 8.
    M. Hasert, Multi-scale lattice Boltzmann simulations on distributed octrees. Ph.D. thesis, RWTH Aachen University (2014)Google Scholar
  9. 9.
    S.J.B. Stoll, Lattice Boltzmann simulation of acoustic fields, with special attention to non-reflecting boundary conditions. Master’s thesis, Norwegian University of Science and Technology (NTNU), Trondheim (2014)Google Scholar
  10. 10.
    L.E. Kinsler, A.R. Frey, A.B. Coppens, J.V. Sanders, Fundamentals of Acoustics, 4th edn. (Wiley, New York, 2000)Google Scholar
  11. 11.
    D.T. Blackstock, Fundamentals of Physical Acoustics (Wiley, New York, 2000)Google Scholar
  12. 12.
    P.M. Morse, K.U. Ingard, Theoretical Acoustics (McGraw-Hill Book Company, New York, 1968)Google Scholar
  13. 13.
    A.D. Pierce, Acoustics (The Acoustical Society of America, New York, 1989)Google Scholar
  14. 14.
    S. Temkin, Elements of Acoustics (Wiley, New York, 1981)Google Scholar
  15. 15.
    Lord Rayleigh, The Theory of Sound, vol. 1, 1st edn. (Macmillan and Co., London, 1877)Google Scholar
  16. 16.
    Lord Rayleigh, Proc. Lond. Math. Soc. s1-9 (1), 21 (1877)Google Scholar
  17. 17.
    E.M. Viggen, Phys. Rev. E 87 (2) (2013)Google Scholar
  18. 18.
    C. Truesdell, J. Rat. Mech. Anal. 2 (4), 643 (1953)MathSciNetGoogle Scholar
  19. 19.
    M. Greenspan, in Physical Acoustics, vol. IIA, ed. by W.P. Mason (Academic Press, New York, 1965), pp. 1–45Google Scholar
  20. 20.
    E.M. Salomons, W.J.A. Lohman, H. Zhou, PLOS ONE 11 (1), e0147206 (2016)CrossRefGoogle Scholar
  21. 21.
    N.H. Johannesen, J.P. Hodgson, Reports Prog. Phys. 42 (4), 629 (1979)ADSCrossRefGoogle Scholar
  22. 22.
    Y. Li, X. Shan, Phil. Trans. R. Soc. A 369 (1944), 2371 (2011)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    C. Sun, F. Paot, R. Zhang, D.M. Freed, H. Chen, Commun. Comput. Phys. 13 (1), 757 (2013)CrossRefGoogle Scholar
  24. 24.
    M.S. Howe, Theory of Vortex Sound (Cambridge University Press, Cambridge, 2003)zbMATHGoogle Scholar
  25. 25.
    M.J. Lighthill, Proc. R. Soc. Lond. A 211 (1107), 564 (1952)ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    J.M. Buick, C.L. Buckley, C.A. Greated, J. Gilbert, J. Phys. A 33, 3917 (2000)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    E.M. Viggen, Phys. Rev. E 90, 013310 (2014)ADSCrossRefGoogle Scholar
  28. 28.
    E.M. Viggen, Commun. Comput. Phys. 13 (3), 671 (2013)CrossRefGoogle Scholar
  29. 29.
    G.G. Stokes, Trans. Cambridge Phil. Soc. 8, 287 (1845)Google Scholar
  30. 30.
    C.S. Wang Chang, G.E. Uhlenbeck, in Studies in Statistical Mechanics, vol. V (North-Holland Publishing, Amsterdam, 1970)Google Scholar
  31. 31.
    J. Foch, G. Uhlenbeck, Phys. Rev. Lett. 19 (18), 1025 (1967)ADSCrossRefGoogle Scholar
  32. 32.
    J. Foch, M. Losa, Phys. Rev. Lett. 28 (20), 1315 (1972)ADSCrossRefGoogle Scholar
  33. 33.
    J.D. Sterling, S. Chen, J. Comput. Phys. 123 (1), 196 (1996)ADSCrossRefGoogle Scholar
  34. 34.
    P. Lallemand, L.S. Luo, Phys. Rev. E 61 (6), 6546 (2000)ADSMathSciNetCrossRefGoogle Scholar
  35. 35.
    P. Dellar, Phys. Rev. E 64 (3) (2001)Google Scholar
  36. 36.
    A. Wilde, Comput. Fluids 35, 986 (2006)CrossRefGoogle Scholar
  37. 37.
    T. Reis, T.N. Phillips, Phys. Rev. E 77 (2), 026702 (2008)ADSMathSciNetCrossRefGoogle Scholar
  38. 38.
    S. Marié, D. Ricot, P. Sagaut, J. Comput. Phys. 228 (4), 1056 (2009)ADSMathSciNetCrossRefGoogle Scholar
  39. 39.
    E.M. Viggen, Phil. Trans. R. Soc. A 369 (1944), 2246 (2011)ADSMathSciNetCrossRefGoogle Scholar
  40. 40.
    D. Haydock, J.M. Yeomans, J. of Phys. A 34, 5201 (2001)ADSMathSciNetGoogle Scholar
  41. 41.
    J.M. Buick, J.A. Cosgrove, J. Phys. A 39 (44), 13807 (2006)ADSMathSciNetCrossRefGoogle Scholar
  42. 42.
    X.M. Li, R.C.K. Leung, R.M.C. So, AIAA J. 44 (1), 78 (2006)ADSCrossRefGoogle Scholar
  43. 43.
    X.M. Li, R.M.C. So, R.C.K. Leung, AIAA J. 44 (12), 2896 (2006)ADSCrossRefGoogle Scholar
  44. 44.
    A.R. da Silva, G.P. Scavone, J. Phys. A 40 (3), 397 (2007)ADSMathSciNetCrossRefGoogle Scholar
  45. 45.
    E.W.S. Kam, R.M.C. So, R.C.K. Leung, AIAA J. 45 (7), 1703 (2007)ADSCrossRefGoogle Scholar
  46. 46.
    E. Vergnault, O. Malaspinas, P. Sagaut, J. Comput. Phys. 231 (24), 8070 (2012)ADSMathSciNetCrossRefGoogle Scholar
  47. 47.
    D. Heubes, A. Bartel, M. Ehrhardt, J. Comput. Appl. Math. 262, 51 (2014)MathSciNetCrossRefGoogle Scholar
  48. 48.
    W. de Roeck, M. Baelmans, W. Desmet, AIAA J. 46 (2), 463 (2008)ADSCrossRefGoogle Scholar
  49. 49.
    C. Silva, F. Nicoud, S. Moreau, in 16th AIAA/CEAS Aeroacoustics Conference (2010)Google Scholar
  50. 50.
    S. Sinayoko, A. Agarwal, Z. Hu, J. Fluid Mech. 668, 335 (2011)ADSMathSciNetCrossRefGoogle Scholar
  51. 51.
    S. Sinayoko, A. Agarwal, J. Acoust. Soc. Am. 131 (3), 1959 (2012)ADSCrossRefGoogle Scholar
  52. 52.
    N. Curle, Proc. R. Soc. A 231, 505 (1955)ADSMathSciNetCrossRefGoogle Scholar
  53. 53.
    J.E. Ffowcs Williams, D.L. Hawkings, Phil. Trans. R. Soc. A 264 (1151), 321 (1969)ADSCrossRefGoogle Scholar
  54. 54.
    K.S. Brentner, F. Farassat, AIAA J. 36 (8), 1379 (1998)ADSCrossRefGoogle Scholar
  55. 55.
    T. Colonius, S.K. Lele, Progress Aerospace Sci. 40 (6), 345 (2004)ADSCrossRefGoogle Scholar
  56. 56.
    M. Wang, J.B. Freund, S.K. Lele, Annu. Rev. Fluid Mech. 38 (1), 483 (2006)ADSMathSciNetCrossRefGoogle Scholar
  57. 57.
    E. Garnier, N. Adams, P. Sagaut, Large Eddy Simulation for Compressible Flows. Scientific Computation (Springer, New York, 2009)CrossRefzbMATHGoogle Scholar
  58. 58.
    H. Yu, K. Zhao, Phys. Rev. E 61 (4), 3867 (2000)ADSMathSciNetCrossRefGoogle Scholar
  59. 59.
    D.T. Blackstock, J. Acoust. Soc. Am. 41 (5), 1312 (1967)ADSCrossRefGoogle Scholar
  60. 60.
    S. Izquierdo, P. Martínez-Lera, N. Fueyo, Comp. Math. Appl. 58 (5), 914 (2009)CrossRefGoogle Scholar
  61. 61.
    P.A. Thompson, Compressible-Fluid Dynamics (McGraw-Hill, New York, 1972)zbMATHGoogle Scholar
  62. 62.
    T. Colonius, Annu. Rev. Fluid Mech. 36, 315 (2004)ADSMathSciNetCrossRefGoogle Scholar
  63. 63.
    S. Izquierdo, N. Fueyo, Phys. Rev. E 78 (4) (2008)Google Scholar
  64. 64.
    M. Tekitek, M. Bouzidi, F. Dubois, P. Lallemand, Comp. Math. Appl. 58 (5), 903 (2009)MathSciNetCrossRefGoogle Scholar
  65. 65.
    A. Najafi-Yazdi, L. Mongeau, Comput. Fluids 68, 203 (2012)MathSciNetCrossRefGoogle Scholar
  66. 66.
    M.M. Tekitek, M. Bouzidi, F. Dubois, P. Lallemand, Prog. Comput. Fluid Dyn. 8 (1–4), 49 (2008)MathSciNetCrossRefGoogle Scholar
  67. 67.
    K.W. Thompson, J. Comput. Phys. 68 (1), 1 (1987)ADSMathSciNetCrossRefGoogle Scholar
  68. 68.
    T. Poinsot, S. Lele, J. Comput. Phys. 101, 104 (1992)ADSMathSciNetCrossRefGoogle Scholar
  69. 69.
    E. Vergnault, O. Malaspinas, P. Sagaut, J. Acoust. Soc. Am. 133 (3), 1293 (2013)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Timm Krüger
    • 1
  • Halim Kusumaatmaja
    • 2
  • Alexandr Kuzmin
    • 3
  • Orest Shardt
    • 4
  • Goncalo Silva
    • 5
  • Erlend Magnus Viggen
    • 6
  1. 1.School of Engineering University of EdinburghEdinburghUK
  2. 2.Department of PhysicsDurham UniversityDurhamUK
  3. 3.Maya Heat Transfer TechnologiesWestmountCanada
  4. 4.Department of Mechanical and Aerospace EngineeringPrinceton UniversityPrincetonUSA
  5. 5.IDMEC/IST, University of LisbonLisbonPortugal
  6. 6.Acoustics Research Centre, SINTEF ICTTrondheimNorway

Personalised recommendations