Advertisement

Boundary Conditions for Fluid-Structure Interaction

  • Timm Krüger
  • Halim Kusumaatmaja
  • Alexandr Kuzmin
  • Orest Shardt
  • Goncalo Silva
  • Erlend Magnus Viggen
Chapter
Part of the Graduate Texts in Physics book series (GTP)

Abstract

After reading this chapter, you will have insight into a large number of more complex lattice Boltzmann boundary conditions, including advanced bounce-back methods, ghost methods, and immersed boundary methods. These boundary conditions will allow you to simulate things like curved boundaries, flows in media with sub-grid porosity, rigid but moveable objects immersed in the fluid, and even flows with deformable objects such as red blood cells.

References

  1. 1.
    S. Haeri, J.S. Shrimpton, Int. J. Multiphas. Flow 40, 38 (2012)CrossRefGoogle Scholar
  2. 2.
    X. He, G. Doolen, J. Comput. Phys. 134, 306 (1997)ADSCrossRefGoogle Scholar
  3. 3.
    P. Lallemand, L.S. Luo, Phys. Rev. E 61 (6), 6546 (2000)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    T. Lee, C.L. Lin, J. Comput. Phys. 171 (1), 336 (2001)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    Z. Guo, T.S. Zhao, Phys. Rev. E 67 (6), 066709 (2003)ADSCrossRefGoogle Scholar
  6. 6.
    N. Rossi, S. Ubertini, G. Bella, S. Succi, Int. J. Numer. Meth. Fluids 49 (6), 619 (2005)CrossRefGoogle Scholar
  7. 7.
    H. Yoshida, M. Nagaoka, J. Comput. Phys. 257, Part A, 884 (2014)Google Scholar
  8. 8.
    R. Cornubert, D. d’Humières, D. Levermore, Physica D 47, 241 (1991)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    I. Ginzburg, P.M. Adler, J. Phys. II France 4 (2), 191 (1994)CrossRefGoogle Scholar
  10. 10.
    A.J.C. Ladd, J. Fluid Mech. 271, 285 (1994)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    M. Bouzidi, M. Firdaouss, P. Lallemand, Phys. Fluids 13, 3452 (2001)ADSCrossRefGoogle Scholar
  12. 12.
    C. Pan, L.S. Luo, C.T. Miller, Comput. Fluids 35 (8-9), 898 (2006)CrossRefGoogle Scholar
  13. 13.
    O.E. Strack, B.K. Cook, Int. J. Numer. Meth. Fluids 55 (2), 103 (2007)CrossRefGoogle Scholar
  14. 14.
    L. Chen, Y. Yu, J. Lu, G. Hou, Int. J. Numer. Meth. Fluids 74 (6), 439 (2014)MathSciNetCrossRefGoogle Scholar
  15. 15.
    S. Khirevich, I. Ginzburg, U. Tallarek, J. Comp. Phys. 281, 708 (2015)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    M.O. Bernabeu, M.L. Jones, J.H. Nielsen, T. Krüger, R.W. Nash, D. Groen, S. Schmieschek, J. Hetherington, H. Gerhardt, C.A. Franco, P.V. Coveney, J. R. Soc. Interface 11 (99), 20140543 (2014)CrossRefGoogle Scholar
  17. 17.
    I. Ginzburg, D. d’Humières, Phys. Rev. E 68, 066614 (2003)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    B. Chun, A.J.C. Ladd, Phys. Rev. E 75, 066705 (2007)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    X. He, Q. Zou, L.S. Luo, M. Dembo, J. Stat. Phys. 87 (1–2), 115 (1997)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    I. Ginzburg, D. d’Humières, J. Stat. Phys. 84, 927 (1996)ADSCrossRefGoogle Scholar
  21. 21.
    A.J.C. Ladd, Phys. Rev. Lett. 70 (9), 1339 (1993)ADSCrossRefGoogle Scholar
  22. 22.
    A.J.C. Ladd, J. Fluid Mech. 271, 311 (1994)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    A.J.C. Ladd, R. Verberg, J. Stat. Phys. 104 (5–6), 1191 (2001)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    C.K. Aidun, J.R. Clausen, Annu. Rev. Fluid Mech. 42, 439 (2010)ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    N.Q. Nguyen, A.J.C. Ladd, Phys. Rev. E 66 (4), 046708 (2002)ADSCrossRefGoogle Scholar
  26. 26.
    E.J. Ding, C.K. Aidun, J. Stat. Phys. 112 (3–4), 685 (2003)CrossRefGoogle Scholar
  27. 27.
    C.K. Aidun, Y. Lu, E.J. Ding, J. Fluid Mech. 373, 287 (1998)ADSCrossRefGoogle Scholar
  28. 28.
    D. Qi, J. Fluid Mech. 385, 41 (1999)ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    X. Yin, G. Le, J. Zhang, Phys. Rev. E 86 (2), 026701 (2012)ADSCrossRefGoogle Scholar
  30. 30.
    E. Lorenz, A. Caiazzo, A.G. Hoekstra, Phys. Rev. E 79 (3), 036705 (2009)ADSCrossRefGoogle Scholar
  31. 31.
    J.R. Clausen, C.K. Aidun, Int. J. Multiphas. Flow 35 (4), 307 (2009)CrossRefGoogle Scholar
  32. 32.
    B. Wen, C. Zhang, Y. Tu, C. Wang, H. Fang, J. Comput. Phys. 266, 161 (2014)ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    O. Behrend, Phys. Rev. E 52 (1), 1164 (1995)ADSCrossRefGoogle Scholar
  34. 34.
    M.A. Gallivan, D.R. Noble, J.G. Georgiadis, R.O. Buckius, Int. J. Numer. Meth. Fluids 25 (3), 249–263 (1997)CrossRefGoogle Scholar
  35. 35.
    Y. Han, P.A. Cundall, Int. J. Numer. Meth. Fluids 67 (3), 314–327 (2011)MathSciNetCrossRefGoogle Scholar
  36. 36.
    P.H. Kao, R.J. Yang, J. Comput. Phys. 227 (11), 5671 (2008)ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    I. Ginzburg, F. Verhaeghe, D. d’Humières, Commun. Comput. Phys. 3, 427 (2008)MathSciNetGoogle Scholar
  38. 38.
    I. Ginzburg, F. Verhaeghe, D. d’Humières, Commun. Comput. Phys. 3, 519 (2008)MathSciNetGoogle Scholar
  39. 39.
    X. Descovich, G. Pontrelli, S. Melchionna, S. Succi, S. Wassertheurer, Int. J. Mod. Phys. C 24 (05), 1350030 (2013)ADSMathSciNetCrossRefGoogle Scholar
  40. 40.
    P. Lallemand, L.S. Luo, J. Comput. Phys. 184 (2), 406 (2003)ADSMathSciNetCrossRefGoogle Scholar
  41. 41.
    D. Yu, R. Mei, W. Shyy, in 41st Aerospace Sciences Meeting and Exhibit, 2003-953 (AIAA, New York, 2003)Google Scholar
  42. 42.
    X. Yin, J. Zhang, J. Comput. Phys. 231 (11), 4295 (2012)ADSMathSciNetCrossRefGoogle Scholar
  43. 43.
    O. Dardis, J. McCloskey, Phys. Rev. E 57 (4), 4834 (1998)ADSCrossRefGoogle Scholar
  44. 44.
    S.D.C. Walsh, H. Burwinkle, M.O. Saar, Comput. Geosci. 35 (6), 1186 (2009)ADSCrossRefGoogle Scholar
  45. 45.
    J. Zhu, J. Ma, Adv. Water Resour. 56, 61 (2013)ADSMathSciNetCrossRefGoogle Scholar
  46. 46.
    D.R. Noble, J.R. Torczynski, Int. J. Mod. Phys. C 09 (08), 1189 (1998)ADSCrossRefGoogle Scholar
  47. 47.
    L. Chen, Y. Yu, G. Hou, Phys. Rev. E 87 (5), 053306 (2013)ADSCrossRefGoogle Scholar
  48. 48.
    I. Ginzburg, Adv. Water Resour. 88, 241 (2016)ADSCrossRefGoogle Scholar
  49. 49.
    I. Ginzburg, G. Silva, L. Talon, Phys. Rev. E 91, 023307 (2015)ADSMathSciNetCrossRefGoogle Scholar
  50. 50.
    H. Yoshida, H. Hayashi, J. Stat. Phys. 155, 277 (2014)ADSMathSciNetCrossRefGoogle Scholar
  51. 51.
    G. Zhou, L. Wang, X. Wang, W. Ge, Phys. Rev. E 84 (6), 066701 (2011)ADSCrossRefGoogle Scholar
  52. 52.
    H. Yu, X. Chen, Z. Wang, D. Deep, E. Lima, Y. Zhao, S.D. Teague, Phys. Rev. E 89 (6), 063304 (2014)ADSCrossRefGoogle Scholar
  53. 53.
    R. Mei, L.S. Luo, P. Lallemand, D. d’Humières, Comput. Fluids 35 (8-9), 855 (2006)MathSciNetCrossRefGoogle Scholar
  54. 54.
    G. Pontrelli, C.S. König, I. Halliday, T.J. Spencer, M.W. Collins, Q. Long, S. Succi, Med. Eng. Phys. 33 (7), 832 (2011)CrossRefGoogle Scholar
  55. 55.
    B. Stahl, B. Chopard, J. Latt, Comput. Fluids 39 (9), 1625–1633 (2010)CrossRefGoogle Scholar
  56. 56.
    M. Matyka, Z. Koza, Ł. Mirosław, Comput. Fluids 73, 115 (2013)MathSciNetCrossRefGoogle Scholar
  57. 57.
    X. Kang, Z. Dun, Int. J. Mod. Phys. C p. 1450057 (2014)Google Scholar
  58. 58.
    R. Mei, L.S. Luo, W. Shyy, J. Comput. Phys. 155 (2), 307 (1999)ADSCrossRefGoogle Scholar
  59. 59.
    B. Wen, H. Li, C. Zhang, H. Fang, Phys. Rev. E 85 (1), 016704 (2012)ADSCrossRefGoogle Scholar
  60. 60.
    Z.L. Guo, C.G. Zheng, B.C. Shi, Phys. Fluids 14, 2007 (2002)ADSCrossRefGoogle Scholar
  61. 61.
    A. Tiwari, S.P. Vanka, Int. J. Numer. Meth. Fluids 69 (2), 481 (2012)MathSciNetCrossRefGoogle Scholar
  62. 62.
    O.R. Mohammadipoor, H. Niazmand, S.A. Mirbozorgi, Phys. Rev. E 89 (1), 013309 (2014)ADSCrossRefGoogle Scholar
  63. 63.
    J.C.G. Verschaeve, B. Müller, J. Comput. Phys. 229, 6781 (2010)ADSMathSciNetCrossRefGoogle Scholar
  64. 64.
    J. Latt, B. Chopard, O. Malaspinas, M. Deville, A. Michler, Phys. Rev. E 77 (5), 056703 (2008)ADSCrossRefGoogle Scholar
  65. 65.
    O. Filippova, D. Hänel, J. Comput. Phys. 147, 219 (1998)ADSCrossRefGoogle Scholar
  66. 66.
    R. Mei, D. Yu, W. Shyy, L.S. Luo, Phys. Rev. E 65 (4), 041203 (2002)ADSCrossRefGoogle Scholar
  67. 67.
    J. Bao, P. Yuan, L. Schaefer, J. Comput. Phys. 227 (18), 8472 (2008)ADSMathSciNetCrossRefGoogle Scholar
  68. 68.
    R. Khazaeli, S. Mortazavi, M. Ashrafizaadeh, J. Comput. Phys. 250, 126 (2013)ADSMathSciNetCrossRefGoogle Scholar
  69. 69.
    Q. Zou, X. He, Phys. Fluids 9, 1591 (1997)ADSMathSciNetCrossRefGoogle Scholar
  70. 70.
    N. Pellerin, S. Leclaire, M. Reggio, Comput. Fluids 101, 126 (2014)MathSciNetCrossRefGoogle Scholar
  71. 71.
    C.S. Peskin, Flow patterns around heart valves: A digital computer method for solving the equations of motion. Ph.D. thesis, Sue Golding Graduate Division of Medical Sciences, Albert Einstein College of Medicine, Yeshiva University (1972)Google Scholar
  72. 72.
    C.S. Peskin, J. Comput. Phys. 25 (3), 220 (1977)ADSMathSciNetCrossRefGoogle Scholar
  73. 73.
    C.S. Peskin, Acta Numerica 11, 479–517 (2002)MathSciNetCrossRefGoogle Scholar
  74. 74.
    Z.G. Feng, E.E. Michaelides, J. Comput. Phys. 195 (2), 602 (2004)ADSCrossRefGoogle Scholar
  75. 75.
    S.K. Kang, Y.A. Hassan, Int. J. Numer. Meth. Fluids 66 (9), 1132 (2011)CrossRefGoogle Scholar
  76. 76.
    Y. Cheng, L. Zhu, C. Zhang, Commun. Comput. Phys. 16 (1), 136 (2014)MathSciNetCrossRefGoogle Scholar
  77. 77.
    R. Mittal, G. Iaccarino, Annu. Rev. Fluid Mech. 37, 239 (2005)ADSMathSciNetCrossRefGoogle Scholar
  78. 78.
    J. Lu, H. Han, B. Shi, Z. Guo, Phys. Rev. E 85 (1), 016711 (2012)ADSCrossRefGoogle Scholar
  79. 79.
    T. Seta, R. Rojas, K. Hayashi, A. Tomiyama, Phys. Rev. E 89 (2), 023307 (2014)ADSCrossRefGoogle Scholar
  80. 80.
    B.E. Griffith, X. Luo, D.M. McQueen, C.S. Peskin, Int. J. Appl. Mech. 01, 137 (2009)CrossRefGoogle Scholar
  81. 81.
    X. Wang, L.T. Zhang, Comput. Mech. 45 (4), 321 (2010)CrossRefGoogle Scholar
  82. 82.
    X. Yang, X. Zhang, Z. Li, G.W. He, J. Comput. Phys. 228 (20), 7821 (2009)ADSMathSciNetCrossRefGoogle Scholar
  83. 83.
    Z. Guo, C. Zheng, B. Shi, Phys. Rev. E 65, 46308 (2002)ADSCrossRefGoogle Scholar
  84. 84.
    S.K. Doddi, P. Bagchi, Int. J. Multiphas. Flow 34 (10), 966 (2008)CrossRefGoogle Scholar
  85. 85.
    T. Krüger, F. Varnik, D. Raabe, Comput. Method. Appl. 61 (12), 3485 (2011)CrossRefGoogle Scholar
  86. 86.
    G. Tryggvason, B. Bunner, A. Esmaeeli, D. Juric, N. Al-Rawahi, W. Tauber, J. Han, S. Nas, Y.J. Jan, J. Comput. Phys. 169 (2), 708 (2001)ADSMathSciNetCrossRefGoogle Scholar
  87. 87.
    K. Suzuki, T. Inamuro, Comput. Fluids 49 (1), 173 (2011)MathSciNetCrossRefGoogle Scholar
  88. 88.
    D. Nie, J. Lin, Commun. Comput. Phys. 7 (3), 544 (2010)MathSciNetGoogle Scholar
  89. 89.
    S.K. Doddi, P. Bagchi, Phys. Rev. E 79 (4), 046318 (2009)ADSCrossRefGoogle Scholar
  90. 90.
    S. Ramanujan, C. Pozrikidis, J. Fluid Mech. 361, 117 (1998)ADSMathSciNetCrossRefGoogle Scholar
  91. 91.
    Z.G. Feng, E.E. Michaelides, Comput. Fluids 38 (2), 370 (2009)CrossRefGoogle Scholar
  92. 92.
    Cgal, Computational Geometry Algorithms Library. http://www.cgal.org
  93. 93.
    Gmsh: a three-dimensional finite element mesh generator with built-in pre- and post-processing facilities. http://www.geuz.org/gmsh
  94. 94.
    Y. Peng, L.S. Luo, Prog. Comput. Fluid Dyn. 8 (1), 156 (2008)MathSciNetCrossRefGoogle Scholar
  95. 95.
    A. Caiazzo, S. Maddu, Comput. Math. Appl. 58 (5), 930 (2009)MathSciNetCrossRefGoogle Scholar
  96. 96.
    L. Zhu, G. He, S. Wang, L. Miller, X. Zhang, Q. You, S. Fang, Comput. Math. Appl. 61 (12), 3506 (2011)MathSciNetCrossRefGoogle Scholar
  97. 97.
    Q. Zhou, L.S. Fan, J. Comput. Phys. 268, 269 (2014)ADSMathSciNetCrossRefGoogle Scholar
  98. 98.
    O. Shardt, J.J. Derksen, Int. J. Multiphase Flow 47, 25 (2012)CrossRefGoogle Scholar
  99. 99.
    G. Le, J. Zhang, Phys. Rev. E 79 (2), 026701 (2009)ADSCrossRefGoogle Scholar
  100. 100.
    Z.G. Feng, E.E. Michaelides, J. Comput. Phys. 202 (1), 20 (2005)ADSCrossRefGoogle Scholar
  101. 101.
    J. Wu, C. Shu, J. Comput. Phys. 228 (6), 1963 (2009)ADSMathSciNetCrossRefGoogle Scholar
  102. 102.
    J. Wu, C. Shu, Y.H. Zhang, Int. J. Numer. Meth. Fluids 62 (3), 327 (2010)MathSciNetGoogle Scholar
  103. 103.
    J. Wu, C. Shu, Int. J. Numer. Meth. Fluids 68 (8), 977 (2012)MathSciNetCrossRefGoogle Scholar
  104. 104.
    P. Bagchi, Biophys. J. 92 (6), 1858 (2007)ADSCrossRefGoogle Scholar
  105. 105.
    M.M. Dupin, I. Halliday, C.M. Care, L. Alboul, L.L. Munn, Phys. Rev. E 75 (6), 066707 (2007)ADSCrossRefGoogle Scholar
  106. 106.
    J. Zhang, P.C. Johnson, A.S. Popel, Phys. Biol. 4 (4), 285 (2007)ADSCrossRefGoogle Scholar
  107. 107.
    Y. Sui, Y. Chew, P. Roy, H. Low, J. Comput. Phys. 227 (12), 6351 (2008)ADSMathSciNetCrossRefGoogle Scholar
  108. 108.
    T. Krüger, M. Gross, D. Raabe, F. Varnik, Soft Matter 9 (37), 9008 (2013)ADSCrossRefGoogle Scholar
  109. 109.
    U.D. Schiller, Comput. Phys. Commun. 185 (10), 2586 (2014)CrossRefGoogle Scholar
  110. 110.
    P. Ahlrichs, B. Dünweg, Int. J. Mod. Phys. C 09 (08), 1429 (1998)ADSCrossRefGoogle Scholar
  111. 111.
    B. Dünweg, A.J.C. Ladd, in Advances in Polymer Science (Springer, Berlin, Heidelberg, 2008), pp. 1–78Google Scholar
  112. 112.
    I. Cimrák, M. Gusenbauer, I. Jančigová, Comput. Phys. Commun. 185 (3), 900 (2014)ADSCrossRefGoogle Scholar
  113. 113.
    X.D. Niu, C. Shu, Y.T. Chew, Y. Peng, Phys. Lett. A 354 (3), 173 (2006)ADSCrossRefGoogle Scholar
  114. 114.
    Y. Hu, H. Yuan, S. Shu, X. Niu, M. Li, Comput. Math. Appl. 68 (3), 140 (2014)MathSciNetCrossRefGoogle Scholar
  115. 115.
    H.Z. Yuan, X.D. Niu, S. Shu, M. Li, H. Yamaguchi, Comput. Math. Appl. 67 (5), 1039 (2014)MathSciNetCrossRefGoogle Scholar
  116. 116.
    J. Wu, C.K. Aidun, Int. J. Numer. Meth. Fl. 62 (7), 765–783 (2009)Google Scholar
  117. 117.
    H.K. Jeong, H.S. Yoon, M.Y. Ha, M. Tsutahara, J. Comput. Phys. 229 (7), 2526 (2010)ADSMathSciNetCrossRefGoogle Scholar
  118. 118.
    T. Seta, Phys. Rev. E 87 (6), 063304 (2013)ADSCrossRefGoogle Scholar
  119. 119.
    Y. Kim, M.C. Lai, J. Comput. Phys. 229 (12), 4840 (2010)ADSMathSciNetCrossRefGoogle Scholar
  120. 120.
    W.X. Huang, C.B. Chang, H.J. Sung, J. Comput. Phys. 230 (12), 5061 (2011)ADSMathSciNetCrossRefGoogle Scholar
  121. 121.
    W.X. Huang, C.B. Chang, H.J. Sung, J. Comput. Phys. 231 (8), 3340 (2012)ADSMathSciNetCrossRefGoogle Scholar
  122. 122.
    R.W. Nash, H.B. Carver, M.O. Bernabeu, J. Hetherington, D. Groen, T. Krüger, P.V. Coveney, Phys. Rev. E 89 (2), 023303 (2014)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Timm Krüger
    • 1
  • Halim Kusumaatmaja
    • 2
  • Alexandr Kuzmin
    • 3
  • Orest Shardt
    • 4
  • Goncalo Silva
    • 5
  • Erlend Magnus Viggen
    • 6
  1. 1.School of Engineering University of EdinburghEdinburghUK
  2. 2.Department of PhysicsDurham UniversityDurhamUK
  3. 3.Maya Heat Transfer TechnologiesWestmountCanada
  4. 4.Department of Mechanical and Aerospace EngineeringPrinceton UniversityPrincetonUSA
  5. 5.IDMEC/IST, University of LisbonLisbonPortugal
  6. 6.Acoustics Research Centre, SINTEF ICTTrondheimNorway

Personalised recommendations