Skip to main content

MRT and TRT Collision Operators

  • Chapter
  • First Online:
The Lattice Boltzmann Method

Abstract

After reading this chapter, you will have a solid understanding of the general principles of multiple-relaxation-time (MRT) and two-relaxation-time (TRT) collision operators. You will know how to implement these and how to choose the various relaxation times in order to increase the stability, the accuracy, and the possibilities of lattice Boltzmann simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In the following we will only explain the force-free algorithm; the inclusion of forces is discussed in Sect. 10.5.

  2. 2.

    Alternatively, because of the orthogonality condition (10.12) one can represent each column of \({\boldsymbol M}^{-1}\) through the corresponding row vector of \({\boldsymbol M}\). We leave this as an exercise for an interested reader.

References

  1. I. Ginzburg, F. Verhaeghe, D. d’Humières, Commun. Comput. Phys. 3, 519 (2008)

    MathSciNet  Google Scholar 

  2. A. Kuzmin, Multiphase simulations with lattice Boltzmann scheme. Ph.D. thesis, University of Calgary (2010)

    Google Scholar 

  3. X. He, Q. Zou, L.S. Luo, M. Dembo, J. Stat. Phys. 87 (1–2), 115 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  4. I. Ginzbourg, P.M. Adler, J. Phys. II France 4 (2), 191 (1994)

    Article  Google Scholar 

  5. I. Ginzburg, D. d’Humières, Phys. Rev. E 68, 066614 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  6. S. Khirevich, I. Ginzburg, U. Tallarek, J. Comp. Phys. 281, 708 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  7. D. d’Humières, I. Ginzburg, Comput. Math. Appl. 58, 823 (2009)

    Article  MathSciNet  Google Scholar 

  8. Y.H. Qian, Y. Zhou, Europhys. Lett. 42 (4), 359 (1998)

    Article  ADS  Google Scholar 

  9. P. Lallemand, L.S. Luo, Phys. Rev. E 61 (6), 6546 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  10. P.J. Dellar, J. Comput. Phys. 259, 270 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  11. G. Silva, V. Semiao, J. Comput. Phys. 269, 259 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  12. B. Servan-Camas, F. Tsai, Adv. Water Resour. 31, 1113 (2008)

    Article  ADS  Google Scholar 

  13. I. Ginzburg, Phys. Rev. E 77, 066704 (2008)

    Article  ADS  Google Scholar 

  14. I. Ginzburg, Adv. Water Resour. 28 (11), 1171 (2005)

    Article  ADS  Google Scholar 

  15. J. Latt, Hydrodynamic limit of lattice Boltzmann equations. Ph.D. thesis, University of Geneva (2007)

    Google Scholar 

  16. J. Latt, B. Chopard, Math. Comput. Simul. 72 (2–6), 165 (2006)

    Article  MathSciNet  Google Scholar 

  17. R. Zhang, X. Shan, H. Chen, Phys. Rev. E 74, 046703 (2006)

    Article  ADS  Google Scholar 

  18. A. Montessori, G. Facucci, P. Prestininzi, A. La Rocca, S. Succi, Phys. Rev. E 89, 053317 (2014)

    Article  ADS  Google Scholar 

  19. B.M. Boghosian, J. Yepez, P.V. Coveney, A. Wagner, Proc. R. Soc. A 457 (2007), 717 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  20. S. Ansumali, I.V. Karlin, H.C. Öttinger, Europhys. Lett. 63 (6), 798 (2003)

    Article  ADS  Google Scholar 

  21. M. Geier, A. Greiner, J. Korvink, Phys. Rev. E 73 (066705), 1 (2006)

    Google Scholar 

  22. Y. Ning, K.N. Premnath, D.V. Patil, Int. J. Num. Meth. Fluids 82 (2), 59 (2015)

    Article  MathSciNet  Google Scholar 

  23. M. Geier, M. Schönherr, A. Pasquali, M. Krafczyk, Comput. Math. Appl. 70 (4), 507 (2015)

    Article  MathSciNet  Google Scholar 

  24. I. Karlin, P. Asinari, Physica A 389 (8), 1530 (2010)

    Article  ADS  Google Scholar 

  25. R. Adhikari, S. Succi, Phys. Rev. E 78 (066701), 1 (2008)

    Google Scholar 

  26. P.J. Dellar, J. Comp. Phys. 190, 351 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  27. A. Kuzmin, A. Mohamad, S. Succi, Int. J. Mod. Phys. C 19 (6), 875 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  28. F. Higuera, S. Succi, R. Benzi, Europhys. Lett. 9 (4), 345 (1989)

    Article  ADS  Google Scholar 

  29. D. d’Humières, I. Ginzburg, M. Krafczyk, P. Lallemand, L.S. Luo, Phil. Trans. R. Soc. Lond. A 360, 437 (2002)

    Article  ADS  Google Scholar 

  30. P.J. Dellar, Phys. Rev. E 65 (3) (2002)

    Google Scholar 

  31. R. Benzi, S. Succi, M. Vergassola, Phys. Rep. 222 (3), 145 (1992)

    Article  ADS  Google Scholar 

  32. P. Asinari, Phys. Rev. E 77 (056706), 1 (2008)

    Google Scholar 

  33. R. Rubinstein, L.S. Luo, Phys. Rev. E 77 (036709), 1 (2008)

    MathSciNet  Google Scholar 

  34. D.N. Siebert, L.A. Hegele Jr., P.C. Philippi, Phys. Rev. E 77, 026707 (2008)

    Article  ADS  Google Scholar 

  35. P. Asinari, I. Karlin, Phys. Rev. E 81 (016702), 1 (2010)

    Google Scholar 

  36. P. Dellar, Phys. Rev. E 64 (3) (2001)

    Google Scholar 

  37. Z. Guo, C. Zheng, B. Shi, Phys. Rev. E 65, 46308 (2002)

    Article  ADS  Google Scholar 

  38. A. Kuzmin, Z. Guo, A. Mohamad, Phil. Trans. Royal Soc. A 369, 2219 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  39. G. Silva, V. Semiao, J. Fluid Mech. 698, 282 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  40. S. Mukherjee, J. Abraham, Comput. Fluids 36, 1149 (2007)

    Article  Google Scholar 

  41. K. Premnath, J. Abraham, J. Comput. Phys. 224, 539 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  42. P. Lallemand, L.S. Luo, Phys. Rev. E 68, 1 (2003)

    Article  MathSciNet  Google Scholar 

  43. I. Ginzburg, F. Verhaeghe, D. d’Humières, Commun. Comput. Phys. 3, 427 (2008)

    MathSciNet  Google Scholar 

  44. I. Ginzburg, Commun. Comput. Phys. 11, 1439 (2012)

    Article  Google Scholar 

  45. I. Ginzburg, Adv. Water Resour. 28 (11), 1196 (2005)

    Article  ADS  Google Scholar 

  46. I. Ginzburg, D. d’Humières, A. Kuzmin, J. Stat. Phys. 139, 1090 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  47. A. Kuzmin, I. Ginzburg, A. Mohamad, Comp. Math. Appl. 61, 1090 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Krüger, T., Kusumaatmaja, H., Kuzmin, A., Shardt, O., Silva, G., Viggen, E.M. (2017). MRT and TRT Collision Operators. In: The Lattice Boltzmann Method. Graduate Texts in Physics. Springer, Cham. https://doi.org/10.1007/978-3-319-44649-3_10

Download citation

Publish with us

Policies and ethics