Advertisement

MRT and TRT Collision Operators

  • Timm Krüger
  • Halim Kusumaatmaja
  • Alexandr Kuzmin
  • Orest Shardt
  • Goncalo Silva
  • Erlend Magnus Viggen
Chapter
Part of the Graduate Texts in Physics book series (GTP)

Abstract

After reading this chapter, you will have a solid understanding of the general principles of multiple-relaxation-time (MRT) and two-relaxation-time (TRT) collision operators. You will know how to implement these and how to choose the various relaxation times in order to increase the stability, the accuracy, and the possibilities of lattice Boltzmann simulations.

Keywords

Relaxation Rate Bulk Viscosity Hermite Polynomial Collision Operator Equilibrium Moment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    I. Ginzburg, F. Verhaeghe, D. d’Humières, Commun. Comput. Phys. 3, 519 (2008)MathSciNetGoogle Scholar
  2. 2.
    A. Kuzmin, Multiphase simulations with lattice Boltzmann scheme. Ph.D. thesis, University of Calgary (2010)Google Scholar
  3. 3.
    X. He, Q. Zou, L.S. Luo, M. Dembo, J. Stat. Phys. 87 (1–2), 115 (1997)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    I. Ginzbourg, P.M. Adler, J. Phys. II France 4 (2), 191 (1994)CrossRefGoogle Scholar
  5. 5.
    I. Ginzburg, D. d’Humières, Phys. Rev. E 68, 066614 (2003)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    S. Khirevich, I. Ginzburg, U. Tallarek, J. Comp. Phys. 281, 708 (2015)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    D. d’Humières, I. Ginzburg, Comput. Math. Appl. 58, 823 (2009)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Y.H. Qian, Y. Zhou, Europhys. Lett. 42 (4), 359 (1998)ADSCrossRefGoogle Scholar
  9. 9.
    P. Lallemand, L.S. Luo, Phys. Rev. E 61 (6), 6546 (2000)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    P.J. Dellar, J. Comput. Phys. 259, 270 (2014)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    G. Silva, V. Semiao, J. Comput. Phys. 269, 259 (2014)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    B. Servan-Camas, F. Tsai, Adv. Water Resour. 31, 1113 (2008)ADSCrossRefGoogle Scholar
  13. 13.
    I. Ginzburg, Phys. Rev. E 77, 066704 (2008)ADSCrossRefGoogle Scholar
  14. 14.
    I. Ginzburg, Adv. Water Resour. 28 (11), 1171 (2005)ADSCrossRefGoogle Scholar
  15. 15.
    J. Latt, Hydrodynamic limit of lattice Boltzmann equations. Ph.D. thesis, University of Geneva (2007)Google Scholar
  16. 16.
    J. Latt, B. Chopard, Math. Comput. Simul. 72 (2–6), 165 (2006)MathSciNetCrossRefGoogle Scholar
  17. 17.
    R. Zhang, X. Shan, H. Chen, Phys. Rev. E 74, 046703 (2006)ADSCrossRefGoogle Scholar
  18. 18.
    A. Montessori, G. Facucci, P. Prestininzi, A. La Rocca, S. Succi, Phys. Rev. E 89, 053317 (2014)ADSCrossRefGoogle Scholar
  19. 19.
    B.M. Boghosian, J. Yepez, P.V. Coveney, A. Wagner, Proc. R. Soc. A 457 (2007), 717 (2001)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    S. Ansumali, I.V. Karlin, H.C. Öttinger, Europhys. Lett. 63 (6), 798 (2003)ADSCrossRefGoogle Scholar
  21. 21.
    M. Geier, A. Greiner, J. Korvink, Phys. Rev. E 73 (066705), 1 (2006)Google Scholar
  22. 22.
    Y. Ning, K.N. Premnath, D.V. Patil, Int. J. Num. Meth. Fluids 82 (2), 59 (2015)MathSciNetCrossRefGoogle Scholar
  23. 23.
    M. Geier, M. Schönherr, A. Pasquali, M. Krafczyk, Comput. Math. Appl. 70 (4), 507 (2015)MathSciNetCrossRefGoogle Scholar
  24. 24.
    I. Karlin, P. Asinari, Physica A 389 (8), 1530 (2010)ADSCrossRefGoogle Scholar
  25. 25.
    R. Adhikari, S. Succi, Phys. Rev. E 78 (066701), 1 (2008)Google Scholar
  26. 26.
    P.J. Dellar, J. Comp. Phys. 190, 351 (2003)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    A. Kuzmin, A. Mohamad, S. Succi, Int. J. Mod. Phys. C 19 (6), 875 (2008)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    F. Higuera, S. Succi, R. Benzi, Europhys. Lett. 9 (4), 345 (1989)ADSCrossRefGoogle Scholar
  29. 29.
    D. d’Humières, I. Ginzburg, M. Krafczyk, P. Lallemand, L.S. Luo, Phil. Trans. R. Soc. Lond. A 360, 437 (2002)ADSCrossRefGoogle Scholar
  30. 30.
    P.J. Dellar, Phys. Rev. E 65 (3) (2002)Google Scholar
  31. 31.
    R. Benzi, S. Succi, M. Vergassola, Phys. Rep. 222 (3), 145 (1992)ADSCrossRefGoogle Scholar
  32. 32.
    P. Asinari, Phys. Rev. E 77 (056706), 1 (2008)Google Scholar
  33. 33.
    R. Rubinstein, L.S. Luo, Phys. Rev. E 77 (036709), 1 (2008)MathSciNetGoogle Scholar
  34. 34.
    D.N. Siebert, L.A. Hegele Jr., P.C. Philippi, Phys. Rev. E 77, 026707 (2008)ADSCrossRefGoogle Scholar
  35. 35.
    P. Asinari, I. Karlin, Phys. Rev. E 81 (016702), 1 (2010)Google Scholar
  36. 36.
    P. Dellar, Phys. Rev. E 64 (3) (2001)Google Scholar
  37. 37.
    Z. Guo, C. Zheng, B. Shi, Phys. Rev. E 65, 46308 (2002)ADSCrossRefGoogle Scholar
  38. 38.
    A. Kuzmin, Z. Guo, A. Mohamad, Phil. Trans. Royal Soc. A 369, 2219 (2011)ADSMathSciNetCrossRefGoogle Scholar
  39. 39.
    G. Silva, V. Semiao, J. Fluid Mech. 698, 282 (2012)ADSMathSciNetCrossRefGoogle Scholar
  40. 40.
    S. Mukherjee, J. Abraham, Comput. Fluids 36, 1149 (2007)CrossRefGoogle Scholar
  41. 41.
    K. Premnath, J. Abraham, J. Comput. Phys. 224, 539 (2007)ADSMathSciNetCrossRefGoogle Scholar
  42. 42.
    P. Lallemand, L.S. Luo, Phys. Rev. E 68, 1 (2003)MathSciNetCrossRefGoogle Scholar
  43. 43.
    I. Ginzburg, F. Verhaeghe, D. d’Humières, Commun. Comput. Phys. 3, 427 (2008)MathSciNetGoogle Scholar
  44. 44.
    I. Ginzburg, Commun. Comput. Phys. 11, 1439 (2012)CrossRefGoogle Scholar
  45. 45.
    I. Ginzburg, Adv. Water Resour. 28 (11), 1196 (2005)ADSCrossRefGoogle Scholar
  46. 46.
    I. Ginzburg, D. d’Humières, A. Kuzmin, J. Stat. Phys. 139, 1090 (2010)ADSMathSciNetCrossRefGoogle Scholar
  47. 47.
    A. Kuzmin, I. Ginzburg, A. Mohamad, Comp. Math. Appl. 61, 1090 (2011)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Timm Krüger
    • 1
  • Halim Kusumaatmaja
    • 2
  • Alexandr Kuzmin
    • 3
  • Orest Shardt
    • 4
  • Goncalo Silva
    • 5
  • Erlend Magnus Viggen
    • 6
  1. 1.School of Engineering University of EdinburghEdinburghUK
  2. 2.Department of PhysicsDurham UniversityDurhamUK
  3. 3.Maya Heat Transfer TechnologiesWestmountCanada
  4. 4.Department of Mechanical and Aerospace EngineeringPrinceton UniversityPrincetonUSA
  5. 5.IDMEC/IST, University of LisbonLisbonPortugal
  6. 6.Acoustics Research Centre, SINTEF ICTTrondheimNorway

Personalised recommendations