Skip to main content

Genetic Fuzzy Modelling of Li-Ion Batteries Through a Combination of Theta-DEA and Knowledge-Based Preference Ordering

  • Conference paper
  • First Online:
Advances in Artificial Intelligence (CAEPIA 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9868))

Included in the following conference series:

  • 1598 Accesses

Abstract

Learning semi-physical fuzzy models of rechargeable Li-Ion batteries from data involves solving a complex multicriteria optimization task where the accuracies of the approximations of the different observable variables are balanced. The fitness function of this problem depends on the recursive evaluation of a set of differential equations, where fuzzy rule-based systems are embedded as nonlinear blocks. Evaluating this function is a time consuming process, thus algorithms that efficiently promote diversity and hence demand a low number of evaluations of the fitness function are preferred. In this paper, a comparison is carried out between some recent genetic algorithms, whose performances are assessed in this particular modelling problem. It is concluded that the combination of the recent \(\theta \)-Dominance Evolutionary Algorithm (\(\theta \)-DEA) with a Knowledge-based precedence operator, that improves the selection, is a sensible choice. Dominance relations between the Pareto fronts are assessed in terms of binary additive \(\epsilon \)-quality indicators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Data publicly available at http://www.unioviedo.es/batterylab/.

References

  1. Cuma, M.U., Koroglu, T.: A comprehensive review on estimation strategies used in hybrid and battery electric vehicles. Renew. Sustain. Energy Rev. 42, 517–531 (2015)

    Article  Google Scholar 

  2. Waag, W., Fleischer, C., Sauer, D.U.: Critical review of the methods for monitoring of lithium-ion batteries in electric and hybrid vehicles. J. Power Sources 258, 321–339 (2014)

    Article  Google Scholar 

  3. Sanchez, L., Blanco, C., Anton, J.C., Garcia, V., Gonzalez, M., Viera, J.C.: A variable effective capacity model for LiFePO4 traction batteries using computational intelligence techniques. IEEE Trans. Industr. Electron. 62(1), 555–563 (2015)

    Article  Google Scholar 

  4. Drechsler, N., Drechsler, R., Becker, B.: Multi-objective optimisation based on relation favour. In: Zitzler, E., Thiele, L., Deb, K., Coello, C.A.C., Corne, D. (eds.) EMO 2001. LNCS, vol. 1993, pp. 154–166. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  5. Laumanns, M., Thiele, L., Deb, K., Zitzler, E.: Combining convergence and diversity in evolutionary multiobjective optimization. Evol. Comput. 10(3), 263–282 (2002)

    Article  Google Scholar 

  6. Farina, M., Amato, P.: A fuzzy definition of “optimality” for many-criteria optimization problems. IEEE Trans. Syst. Man Cybern. Part A: Syst. Hum. 34(3), 315–326 (2004)

    Article  Google Scholar 

  7. di Pierro, F., Khu, S.T., Savic, D.A.: An investigation on preference ordering ranking scheme in multiobjective evolutionary optimization. IEEE Trans. Evol. Comput. 11(1), 17–45 (2007)

    Article  Google Scholar 

  8. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: improving the strength pareto evolutionary algorithm, pp. 95–100 (2001)

    Google Scholar 

  9. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  10. Sierra, M.R., Coello, C.A.C.: Improving PSO-based multi-objective optimization using crowding, mutation and \(\epsilon \)-dominance. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 505–519. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  11. Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box constraints. IEEE Trans. Evol. Comput. 18(4), 577–601 (2014)

    Article  Google Scholar 

  12. Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)

    Article  Google Scholar 

  13. Yuan, Y., Xu, H., Wang, B., Yao, X.: A new dominance relation based evolutionary algorithm for many-objective optimization. IEEE Trans. Evol. Comput. PP(99), 1 (2015)

    Article  Google Scholar 

  14. Tutum, C.C., Deb, K.: A multimodal approach for evolutionary multi-objective optimization (MEMO): proof-of-principle results. In: Gaspar-Cunha, A., Antunes, C.H., Coello, C.C. (eds.) EMO 2015. LNCS, vol. 9018, pp. 3–18. Springer, Heidelberg (2015)

    Google Scholar 

  15. Zitzler, E., Laumanns, M., Thiele, L., Fonseca, C.M., da Fonseca, V.G.: Why quality assessment of multiobjective optimizers is difficult. In: GECCO 2002: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 666–674. Morgan Kaufmann Publishers Inc., July 2002

    Google Scholar 

  16. Sánchez, L., Couso, I., González, M.: A design methodology for semi-physical fuzzy models applied to the dynamic characterization of LiFePO4 batteries. Appl. Soft Comput. 14, 269–288 (2014)

    Article  Google Scholar 

  17. Linden, D.: Linden’s Handbook of Batteries, 4th edn. McGraw-Hill, New York (2011)

    Google Scholar 

  18. Li, K., Deb, K., Zhang, Q., Kwong, S.: An evolutionary many-objective optimization algorithm based on dominance and decomposition. IEEE Trans. Evol. Comput. 19(5), 694–716 (2015)

    Article  Google Scholar 

  19. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C., da Fonseca, V.: Performance assessment of multiobjective optimizers: an analysis and review. IEEE Trans. Evol. Comput. 7(2), 117–132 (2003)

    Article  Google Scholar 

Download references

Acknowledgements

This work funded by the Eureka SD project (agreement number 2013-2591), that is supported by the Erasmus Mundus programme of the European Union. In addition, was supported by the Spanish Ministry of Science and Innovation (MICINN) and the Regional Ministry of the Principality of Asturias under Grants TIN2014-56967-R, DPI2013-46541-R and FC-15-GRUPIN14-073.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuviny Echevarría .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Echevarría, Y., Sánchez, L., Blanco, C. (2016). Genetic Fuzzy Modelling of Li-Ion Batteries Through a Combination of Theta-DEA and Knowledge-Based Preference Ordering. In: Luaces , O., et al. Advances in Artificial Intelligence. CAEPIA 2016. Lecture Notes in Computer Science(), vol 9868. Springer, Cham. https://doi.org/10.1007/978-3-319-44636-3_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44636-3_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44635-6

  • Online ISBN: 978-3-319-44636-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics