Advertisement

On Garbling Schemes with and Without Privacy

  • Carsten BaumEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9841)

Abstract

Garbling schemes allow to construct two-party function evaluation with security against cheating parties (SFE). To achieve this goal, one party (the Garbler) sends multiple encodings of a circuit (called Garbled Circuits) to the other party (the Evaluator) and opens a subset of these encodings, showing that they were generated honestly. For the remaining garbled circuits, the garbler sends encodings of the inputs. This allows the evaluator to compute the result of function, while the encoding ensures that no other information beyond the output is revealed. To achieve active security against a malicious adversary, the garbler in current protocols has to send O(s) circuits (where s is the statistical security parameter).

In this work we show that, for a certain class of circuits, one can reduce this overhead. We consider circuits where sub-circuits depend only on one party’s input. Intuitively, one can evaluate these sub-circuits using only one circuit and privacy-free garbling. This has applications to e.g. input validation in SFE and allows to construct more efficient SFE protocols in such cases. We additionally show how to integrate our solution with the SFE protocol of [5], thus reducing the overhead even further.

Keywords

Hash Function Secure Protocol Oblivious Transfer Public Input Active Security 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We want to thank Ivan Damgård and Tore Frederiksen for helpful discussions.

References

  1. 1.
    Afshar, A., Mohassel, P., Pinkas, B., Riva, B.: Non-interactive secure computation based on cut-and-choose. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 387–404. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  2. 2.
    Applebaum, B., Ishai, Y., Kushilevitz, E.: From secrecy to soundness: efficient verification via secure computation. In: Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G., Abramsky, S. (eds.) ICALP 2010. LNCS, vol. 6198, pp. 152–163. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  3. 3.
    Bellare, M., Hoang, V.T., Rogaway, P.: Foundations of garbled circuits. In: Proceedings of the ACM Conference on Computer and Communications Security, pp. 784–796. ACM (2012)Google Scholar
  4. 4.
    Crépeau, C., van de Graaf, J., Tapp, A.: Committed oblivious transfer and private multi-party computation. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 110–123. Springer, Heidelberg (1995)Google Scholar
  5. 5.
    Frederiksen, T.K., Jakobsen, T.P., Nielsen, J.B.: Faster maliciously secure two-party computation using the GPU. In: Abdalla, M., De Prisco, R. (eds.) SCN 2014. LNCS, vol. 8642, pp. 358–379. Springer, Heidelberg (2014)Google Scholar
  6. 6.
    Frederiksen, T.K., Nielsen, J.B.: Fast and maliciously secure two-party computation using the GPU. Cryptology ePrint Archive, Report 2013/046 (2013). http://eprint.iacr.org/ Google Scholar
  7. 7.
    Frederiksen, T.K., Nielsen, J.B., Orlandi, C.: Privacy-free garbled circuits with applications to efficient zero-knowledge. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 191–219. Springer, Heidelberg (2015)Google Scholar
  8. 8.
    Gennaro, R., Gentry, C., Parno, B.: Non-interactive verifiable computing: outsourcing computation to untrusted workers. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 465–482. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  9. 9.
    Giacomelli, I., Madsen, J., Orlandi, C.: ZKBoo: faster zero-knowledge for boolean circuits. Cryptology ePrint Archive, Report 2016/163 (2016). http://eprint.iacr.org/
  10. 10.
    Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity or all languages in NP have zero-knowledge proof systems. J. ACM (JACM) 38(3), 690–728 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof-systems. In: Proceedings of the Seventeenth Annual ACM Symposium on Theory of Computing, pp. 291–304. ACM (1985)Google Scholar
  12. 12.
    Ishai, Y., Kushilevitz, E.: Randomizing polynomials: a new representation with applications to round-efficient secure computation. In: Proceedings of 41st Annual Symposium on Foundations of Computer Science, pp. 294–304. IEEE (2000)Google Scholar
  13. 13.
    Jawurek, M., Kerschbaum, F., Orlandi, C.: Zero-knowledge using garbled circuits: how to prove non-algebraic statements efficiently. In: Proceedings of the ACM SIGSAC Conference on Computer and Communications Security, pp. 955–966. ACM (2013)Google Scholar
  14. 14.
    Kamara, S., Wei, L.: Garbled circuits via structured encryption. In: Adams, A.A., Brenner, M., Smith, M. (eds.) FC 2013. LNCS, vol. 7862, pp. 177–188. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  15. 15.
    Katz, J., Malozemoff, A.J., Wang, X.: Efficiently enforcing input validity in secure two-party computation. Cryptology ePrint Archive, Report 2016/184 (2016). http://eprint.iacr.org/2016/184
  16. 16.
    Lindell, Y.: Fast cut-and-choose based protocols for malicious and covert adversaries. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 1–17. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  17. 17.
    Lindell, Y., Pinkas, B.: An efficient protocol for secure two-party computation in the presence of malicious adversaries. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 52–78. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  18. 18.
    Shen, C., Shelat, A.: Fast two-party secure computation with minimal assumptions. In: Proceedings of the ACM SIGSAC Conference on Computer and Communications Security, pp. 523–534. ACM (2013)Google Scholar
  19. 19.
    Tillich, S., Smart, N.: Circuits of basic functions suitable for MPC and FHE. https://www.cs.bris.ac.uk/Research/CryptographySecurity/MPC/. Accessed 25 June 2016
  20. 20.
    Yao, A.C.: Protocols for secure computations. In: 2013 IEEE 54th Annual Symposium on Foundations of Computer Science, pp. 160–164. IEEE (1982)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Computer ScienceAarhus UniversityAarhusDenmark

Personalised recommendations