Advertisement

Signatures Resilient to Uninvertible Leakage

  • Yuyu WangEmail author
  • Takahiro Matsuda
  • Goichiro Hanaoka
  • Keisuke Tanaka
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9841)

Abstract

In this paper, we present a fully leakage resilient signature scheme in the selective auxiliary input model, which captures an extremely wide class of side-channel attacks that are based on physical implementations of algorithms rather than public parameters chosen. Our signature scheme keeps existential unforgeability under chosen message attacks as long as the adversary cannot completely recover the entire secret state from leakage in polynomial time with non-negligible probability. Formally speaking, the leakage is allowed to be any computable uninvertible function on input the secret state, without any additional restrictions. We instantiate such a signature scheme by exploiting a point-function obfuscator with auxiliary input (AIPO) and a differing-inputs obfuscator (diO).

As far as we know, this is the first signature scheme secure against uninvertible leakage. Furthermore, our signature scheme is public-coin, in the sense that the randomness used in the signing procedure is a part of a signature and no additional secret randomness is used.

Additionally, we provide a variant of the above signature scheme, for which leakage functions are additionally required to be injective, and the sizes of the circuits representing leakage functions are upper bounded. This scheme is resilient to uninvertible leakage that information-theoretically determines the secret information, and can be constructed based only on diO, without exploiting AIPO.

Keywords

Leakage resilient signature Selective auxiliary input Uninvertible leakage Side-channel attack 

References

  1. 1.
    Akavia, A., Goldwasser, S., Vaikuntanathan, V.: Simultaneous hardcore bits and cryptography against memory attacks. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 474–495. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  2. 2.
    Ananth, P., Boneh, D., Garg, S., Sahai, A., Zhandry, M.: Differing-inputs obfuscation and applications. IACR Cryptology ePrint Archive 2013:689 (2013)Google Scholar
  3. 3.
    Ananth, P., Jain, A., Naor, M., Sahai, A., Yogev, E.: Universal obfuscation and witness encryption: boosting correctness and combining security. Cryptology ePrint Archive, Report 2016/281 (2016)Google Scholar
  4. 4.
    Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P., Yang, K.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  5. 5.
    Bellare, M., Hoang, V.T., Keelveedhi, S.: Instantiating random oracles via UCEs. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 398–415. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  6. 6.
    Bellare, M., Stepanovs, I.: Point-function obfuscation: a framework and generic constructions. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016-A. LNCS, vol. 9563, pp. 565–594. Springer, Heidelberg (2016). doi: 10.1007/978-3-662-49099-0_21 CrossRefGoogle Scholar
  7. 7.
    Bellare, M., Stepanovs, I., Tessaro, S.: Poly-many hardcore bits for any one-way function and a framework for differing-inputs obfuscation. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014, Part II. LNCS, vol. 8874, pp. 102–121. Springer, Heidelberg (2014)Google Scholar
  8. 8.
    Bellare, M., Stepanovs, I., Waters, B.: New negative results on differing-inputs obfuscation. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 792–821. Springer, Heidelberg (2016). doi: 10.1007/978-3-662-49896-5. ISBN: 978-3-662-49895-8CrossRefGoogle Scholar
  9. 9.
    Bitansky, N., Paneth, O.: Point obfuscation and 3-round zero-knowledge. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 190–208. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  10. 10.
    Boneh, D., Waters, B.: Constrained pseudorandom functions and their applications. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS, vol. 8270, pp. 280–300. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  11. 11.
    Boyle, E., Chung, K.-M., Pass, R.: On extractability obfuscation. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 52–73. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  12. 12.
    Boyle, E., Pass, R.: Limits of extractability assumptions with distributional auxiliary input. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9453, pp. 236–261. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-48800-3_10 CrossRefGoogle Scholar
  13. 13.
    Boyle, E., Segev, G., Wichs, D.: Fully leakage-resilient signatures. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 89–108. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  14. 14.
    Brakerski, Z., Goldwasser, S.: Circular and leakage resilient public-key encryption under subgroup indistinguishability - (or: quadratic residuosity strikes back). In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 1–20. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  15. 15.
    Brakerski, Z., Kalai, Y.T., Katz, J., Vaikuntanathan, V.: Overcoming the hole in the bucket: public-key cryptography resilient to continual memory leakage. In: FOCS 2010, pp. 501–510 (2010)Google Scholar
  16. 16.
    Brzuska, C., Mittelbach, A.: Indistinguishability obfuscation versus multi-bit point obfuscation with auxiliary input. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014, Part II. LNCS, vol. 8874, pp. 142–161. Springer, Heidelberg (2014)Google Scholar
  17. 17.
    Canetti, R.: Towards realizing random oracles: hash functions that hide all partial information. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 455–469. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  18. 18.
    Dodis, Y., Goldwasser, S., Tauman Kalai, Y., Peikert, C., Vaikuntanathan, V.: Public-key encryption schemes with auxiliary inputs. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 361–381. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  19. 19.
    Dodis, Y., Haralambiev, K., López-Alt, A., Wichs, D.: Cryptography against continuous memory attacks. In: FOCS 2010, pp. 511–520 (2010)Google Scholar
  20. 20.
    Dodis, Y., Haralambiev, K., López-Alt, A., Wichs, D.: Efficient public-key cryptography in the presence of key leakage. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 613–631. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  21. 21.
    Dodis, Y., Kalai, Y.T., Lovett, S.: On cryptography with auxiliary input. In: STOC 2009, pp. 621–630 (2009)Google Scholar
  22. 22.
    Faust, S., Hazay, C., Nielsen, J.B., Nordholt, P.S., Zottarel, A.: Signature schemes secure against hard-to-invert leakage. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 98–115. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  23. 23.
    Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate indistinguishability obfuscation and functional encryption for all circuits. In: FOCS 2013, pp. 40–49 (2013)Google Scholar
  24. 24.
    Garg, S., Gentry, C., Halevi, S., Wichs, D.: On the implausibility of differing-inputs obfuscation and extractable witness encryption with auxiliary input. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 518–535. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  25. 25.
    Goldreich, O., Levin, L.A.: A hard-core predicate for all one-way functions. In: STOC 1989, pp. 25–32 (1989)Google Scholar
  26. 26.
    Goldwasser, S., Kalai, Y.T., Peikert, C., Vaikuntanathan, V.: Robustness of the learning with errors assumption. In: ICS 2010, pp. 230–240 (2010)Google Scholar
  27. 27.
    Ishai, Y., Pandey, O., Sahai, A.: Public-coin differing-inputs obfuscation and its applications. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part II. LNCS, vol. 9015, pp. 668–697. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  28. 28.
    Katz, J., Vaikuntanathan, V.: Signature schemes with bounded leakage resilience. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 703–720. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  29. 29.
    Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113. Springer, Heidelberg (1996)Google Scholar
  30. 30.
    Lynn, B.Y.S., Prabhakaran, M., Sahai, A.: Positive results and techniques for obfuscation. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 20–39. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  31. 31.
    Malkin, T., Teranishi, I., Vahlis, Y., Yung, M.: Signatures resilient to continual leakage on memory and computation. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 89–106. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  32. 32.
    Naor, M., Segev, G.: Public-key cryptosystems resilient to key leakage. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 18–35. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  33. 33.
    Ramchen, K., Waters, B.: Fully secure and fast signing from obfuscation. In: ACM CCS 2014, pp. 659–673 (2014)Google Scholar
  34. 34.
    Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryption, and more. In: STOC 2014, pp. 475–484 (2014)Google Scholar
  35. 35.
    Standaert, F.-X.: Leakage resilient cryptography: a practical overview. In: Invited Talk, SKEW 2011 (2011)Google Scholar
  36. 36.
    Wee, H.: On obfuscating point functions. In: STOC 2005, pp. 523–532 (2005)Google Scholar
  37. 37.
    Yu, Z., Xu, Q., Zhou, Y., Hu, C., Yang, R., Fan, G.: Weak-key leakage resilient cryptography. IACR Cryptology ePrint Archive 2014:159 (2014)Google Scholar
  38. 38.
    Yuen, T.H., Chow, S.S.M., Zhang, Y., Yiu, S.M.: Identity-based encryption resilient to continual auxiliary leakage. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 117–134. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  39. 39.
    Yuen, T.H., Yiu, S.M., Hui, L.C.K.: Fully leakage-resilient signatures with auxiliary inputs. In: Susilo, W., Mu, Y., Seberry, J. (eds.) ACISP 2012. LNCS, vol. 7372, pp. 294–307. Springer, Heidelberg (2012)Google Scholar
  40. 40.
    Yuen, T.H., Zhang, Y., Yiu, S.: Encryption schemes with post-challenge auxiliary inputs. IACR Cryptology ePrint Archive 2013:323 (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Yuyu Wang
    • 1
    • 2
    Email author
  • Takahiro Matsuda
    • 2
  • Goichiro Hanaoka
    • 2
  • Keisuke Tanaka
    • 1
    • 3
  1. 1.Tokyo Institute of TechnologyTokyoJapan
  2. 2.National Institute of Advanced Industrial Science and Technology (AIST)TokyoJapan
  3. 3.JST CRESTTokyoJapan

Personalised recommendations