Advertisement

Non-zero Inner Product Encryption with Short Ciphertexts and Private Keys

  • Jie ChenEmail author
  • Benoît LibertEmail author
  • Somindu C. RamannaEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9841)

Abstract

We describe two constructions of non-zero inner product encryption (NIPE) systems in the public index setting, both having ciphertexts and secret keys of constant size. Both schemes are obtained by tweaking the Boneh-Gentry-Waters broadcast encryption system (Crypto 2005) and are proved selectively secure under previously considered assumptions in groups with a bilinear map. Our first realization builds on prime-order bilinear groups and is proved secure under the Decisional Bilinear Diffie-Hellman Exponent assumption, which is parameterized by the length n of vectors over which the inner product is defined. By moving to composite order bilinear groups, we are able to obtain security under static subgroup decision assumptions following the Déjà Q framework of Chase and Meiklejohn (Eurocrypt 2014) and its extension by Wee (TCC 2016). Our schemes are the first NIPE systems to achieve such parameters, even in the selective security setting. Moreover, they are the first proposals to feature optimally short private keys, which only consist of one group element. Our prime-order-group realization is also the first one with a deterministic key generation mechanism.

Keywords

Functional encryption Non-zero inner products (Identity-based) revocation 

Notes

Acknowledgements

The authors were funded by the “Programme Avenir Lyon Saint-Etienne de l’Université de Lyon” in the framework of the programme “Investissements d’Avenir” (ANR-11-IDEX-0007). Jie Chen was also supported in part by the National Natural Science Foundation of China (Grant No. 61472142).

References

  1. 1.
    Abdalla, M., Bourse, F., De Caro, A., Pointcheval, D.: Simple functional encryption schemes for inner products. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 733–751. Springer, Heidelberg (2015)Google Scholar
  2. 2.
    Agrawal, S., Freeman, D.M., Vaikuntanathan, V.: Functional encryption for inner product predicates from learning with errors. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 21–40. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  3. 3.
    Agrawal, S., Libert, B., Stehlé, D.: Fully secure functional encryption for inner products, from standard assumptions. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9816, pp. 333–362. Springer, Heidelberg (2016). doi: 10.1007/978-3-662-53015-3_12. Cryptology ePrint Archive: Report 2015/608CrossRefGoogle Scholar
  4. 4.
    Attrapadung, N., Libert, B.: Functional encryption for inner product: achieving constant-size ciphertexts with adaptive security or support for negation. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 384–402. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    Attrapadung, N., Libert, B., de Panafieu, E.: Expressive key-policy attribute-based encryption with constant-size ciphertexts. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 90–108. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  6. 6.
    Bishop, A., Jain, A., Kowalczyk, L.: Function-hiding inner product encryption. In: Iwata, T., et al. (eds.) ASIACRYPT 2015. LNCS, vol. 9452, pp. 470–491. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-48797-6_20 CrossRefGoogle Scholar
  7. 7.
    Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    Boneh, D., Boyen, X.: Efficient selective-ID secure identity-based encryption without random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  9. 9.
    Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  10. 10.
    Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical identity based encryption with constant size ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 440–456. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Boneh, D., Goh, E.-J., Nissim, K.: Evaluating 2-DNF formulas on ciphertexts. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  12. 12.
    Boneh, D., Gentry, C., Waters, B.: Collusion resistant broadcast encryption with short ciphertexts and private keys. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 258–275. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  13. 13.
    Camenisch, J., Kohlweiss, M., Soriente, C.: An accumulator based on Bilinear maps and efficient revocation for anonymous credentials. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 481–500. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  14. 14.
    Catalano, D., Fiore, D.: Concise vector commitments and their applications to zero-knowledge elementary databases. In: Cryptology ePrint Archive: Report 2011/495 (2011)Google Scholar
  15. 15.
    Chen, J., Gay, R., Wee, H.: Improved dual system ABE in prime-order groups via predicate encodings. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 595–624. Springer, Heidelberg (2015)Google Scholar
  16. 16.
    Chase, M., Meiklejohn, S.: Déjà Q: using dual systems to revisit q-type assumptions. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 622–639. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  17. 17.
    Cheon, J.H.: Security analysis of the strong Diffie-Hellman problem. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 1–11. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  18. 18.
    Delerablée, C.: Identity-based broadcast encryption with constant size ciphertexts and private keys. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 200–215. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  19. 19.
    Dodis, Y., Yampolskiy, A.: A verifiable random function with short proofs and keys. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 416–431. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  20. 20.
    Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-grained access control of encrypted data. In: ACM CCS 2006, pp. 89–98 (2006)Google Scholar
  21. 21.
    Izabachène, M., Libert, B., Vergnaud, D.: Block-wise P-signatures and non-interactive anonymous credentials with efficient attributes. In: Chen, L. (ed.) IMACC 2011. LNCS, vol. 7089, pp. 431–450. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  22. 22.
    Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, polynomial equations, and inner products. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  23. 23.
    Lewko, A., Sahai, A., Waters, B.: Revocation systems with very small private keys. In: IEEE Symposium on Security and Privacy 2010, pp. 273–285. IEEE Computer Society (2010)Google Scholar
  24. 24.
    Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure functional encryption: attribute-based encryption and (Hierarchical) inner product encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 62–91. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  25. 25.
    Lewko, A., Waters, B.: New techniques for dual system encryption and fully secure HIBE with short ciphertexts. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 455–479. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  26. 26.
    Libert, B., Ramanna, S.C., Yung, M.: Functional commitment schemes: from polynomial commitments to pairing-based accumulators from simple assumptions. In: ICALP 2016 (2016, to appear)Google Scholar
  27. 27.
    Libert, B., Yung, M.: Concise mercurial vector commitments and independent zero-knowledge sets with short proofs. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 499–517. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  28. 28.
    Naor, M.: On cryptographic assumptions and challenges. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 96–109. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  29. 29.
    Naor, M., Pinkas, B.: Efficient trace and revoke schemes. In: Frankel, Y. (ed.) FC 2000. LNCS, vol. 1962, pp. 1–20. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  30. 30.
    Okamoto, T., Takashima, K.: Hierarchical predicate encryption for inner-products. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 214–231. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  31. 31.
    Okamoto, T., Takashima, K.: Fully secure functional encryption with general relations from the decisional linear assumption. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 191–208. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  32. 32.
    Okamoto, T., Takashima, K.: Adaptively attribute-hiding (Hierarchical) inner product encryption. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 591–608. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  33. 33.
    Okamoto, T., Takashima, K.: Fully secure unbounded inner-product and attribute-based encryption. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 349–366. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  34. 34.
    Okamoto, T., Takashima, K.: Achieving short ciphertexts or short secret-keys for adaptively secure general inner-product encryption. Des. Codes Crypt. 77(2–3), 725–771 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  36. 36.
    Shen, E., Shi, E., Waters, B.: Predicate privacy in encryption systems. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 457–473. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  37. 37.
    Waters, B.: Dual system encryption: realizing fully secure IBE and HIBE under simple assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 619–636. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  38. 38.
    Wee, H.: Threshold and revocation cryptosystems via extractable hash proofs. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 589–609. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  39. 39.
    Wee, H.: Dual system encryption via predicate encodings. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 616–637. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  40. 40.
    Wee, H.: Déjà Q: encore! Un Petit IBE. In: Kushilevitz, E., et al. (eds.) TCC 2016-A. LNCS, vol. 9563, pp. 237–258. Springer, Heidelberg (2016). doi: 10.1007/978-3-662-49099-0_9 CrossRefGoogle Scholar
  41. 41.
    Yamada, S., Attrapadung, N., Hanaoka, G., Kunihiro, N.: A framework and compact constructions for non-monotonic attribute-based encryption. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 275–292. Springer, Heidelberg (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Laboratoire LIPÉcole Normale Supérieure de LyonLyonFrance
  2. 2.East China Normal UniversityShanghaiChina

Personalised recommendations