Advertisement

The Feasibility of Outsourced Database Search in the Plain Model

  • Carmit HazayEmail author
  • Hila Zarosim
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9841)

Abstract

The problem of securely outsourcing computation to an untrusted server gained momentum with the recent penetration of cloud computing services. The ultimate goal in this setting is to design efficient protocols that minimize the computational overhead of the clients and instead rely on the extended resources of the server. In this paper, we focus on the outsourced database search problem which is highly motivated in the context of delegatable computing since it offers storage alternatives for massive databases, that may contain confidential data. This functionality is described in two phases: (1) setup phase and (2) query phase. The main goal is to minimize the parties workload in the query phase so that it is proportional to the query size and its corresponding response.

We study whether a trusted setup or a random oracle are necessary for protocols with minimal interaction that meet the optimal communication and computation bounds in the query phase. We answer this question positively and demonstrate a lower bound on the communication or the computational overhead in this phase.

Keywords

Outsourced computation Database search functionalities Lower bound Communication and computational complexities Minimal interaction 

References

  1. [AIK10]
    Applebaum, B., Ishai, Y., Kushilevitz, E.: From secrecy to soundness: efficient verification via secure computation. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6198, pp. 152–163. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  2. [AJLA+12]
    Asharov, G., Jain, A., López-Alt, A., Tromer, E., Vaikuntanathan, V., Wichs, D.: Multiparty computation with low communication, computation and interaction via threshold FHE. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 483–501. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  3. [ANSS16]
    Asharov, G., Naor, M., Segev, G., Shahaf, I.: Searchable symmetric encryption: optimal locality in linear space via two-dimensional balanced allocations. IACR Cryptology ePrint Archive, 2016:251 (2016)Google Scholar
  4. [BCCT12]
    Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: From extractable collision resistance to succinct non-interactive arguments of knowledge, and back again. In: ITCS, pp. 326–349 (2012)Google Scholar
  5. [CGKO11]
    Curtmola, R., Garay, J.A., Kamara, S., Ostrovsky, R.: Searchable symmetric encryption: improved definitions and efficient constructions. J. Comput. Secur. 19(5), 895–934 (2011)CrossRefGoogle Scholar
  6. [CGPR15]
    Cash, D., Grubbs, P., Perry, J., Ristenpart, T.: Leakage-abuse attacks against searchable encryption. In: CCS, pp. 668–679 (2015)Google Scholar
  7. [CK10]
    Chase, M., Kamara, S.: Structured encryption and controlled disclosure. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 577–594. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. [CKKC13]
    Choi, S.G., Katz, J., Kumaresan, R., Cid, C.: Multi-client non-interactive verifiable computation. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 499–518. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  9. [CS14]
    Chase, M., Shen, E.: Pattern matching encryption. IACR Cryptology ePrint Archive, 2014:638 (2014)Google Scholar
  10. [DFH12]
    Damgård, I., Faust, S., Hazay, C.: Secure two-party computation with low communication. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 54–74. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  11. [FHV13]
    Faust, S., Hazay, C., Venturi, D.: Outsourced pattern matching. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013, Part II. LNCS, vol. 7966, pp. 545–556. Springer, Heidelberg (2013)Google Scholar
  12. [FIPR05]
    Freedman, M.J., Ishai, Y., Pinkas, B., Reingold, O.: Keyword search and oblivious pseudorandom functions. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 303–324. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  13. [GGP10]
    Gennaro, R., Gentry, C., Parno, B.: Non-interactive verifiable computing: outsourcing computation to untrusted workers. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 465–482. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  14. [GH11]
    Green, M., Hohenberger, S.: Practical adaptive oblivious transfer from simple assumptions. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 347–363. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  15. [GLR11]
    Goldwasser, S., Lin, H., Rubinstein, A.: Delegation of computation without rejection problem from designated verifier CS-proofs. IACR Cryptology ePrint Archive, 2011:456 (2011)Google Scholar
  16. [GMPP16]
    Garg, S., Mukherjee, P., Pandey, O., Polychroniadou, A.: The exact round complexity of secure computation. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 448–476. Springer, Heidelberg (2016). doi: 10.1007/978-3-662-49896-5_16 CrossRefGoogle Scholar
  17. [Goh03]
    Goh, E.-J.: Secure indexes. IACR Cryptology ePrint Archive, 2003:216 (2003)Google Scholar
  18. [HT10]
    Hazay, C., Toft, T.: Computationally secure pattern matching in the presence of malicious adversaries. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 195–212. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  19. [HZ14]
    Hazay, C., Zarosim, H.: The feasibility of outsourced database search in the plain model. IACR Cryptology ePrint Archive, 2014:706 (2014)Google Scholar
  20. [JJK+13]
    Jarecki, S., Jutla, C.S., Krawczyk, H., Rosu, M.-C., Steiner, M.: Outsourced symmetric private information retrieval. In: CCS, pp. 875–888 (2013)Google Scholar
  21. [KMR11]
    Kamara, S., Mohassel, P., Raykova, M.: Outsourcing multi-party computation. IACR Cryptology ePrint Archive, 2011:272 (2011)Google Scholar
  22. [KMR12]
    Kamara, S., Mohassel, P., Riva, B.: Salus: a system for server-aided secure function evaluation. In: CCS, pp. 797–808 (2012)Google Scholar
  23. [KO04]
    Katz, J., Ostrovsky, R.: Round-optimal secure two-party computation. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 335–354. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  24. [KP13]
    Kamara, S., Papamanthou, C.: Parallel and dynamic searchable symmetric encryption. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 258–274. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  25. [KPR12]
    Kamara, S., Papamanthou, C., Roeder, T.: Dynamic searchable symmetric encryption. In: CCS, pp. 965–976 (2012)Google Scholar
  26. [LATV12]
    López-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty computation on the cloud via multikey fully homomorphic encryption. In: STOC, pp. 1219–1234 (2012)Google Scholar
  27. [Nie02]
    Nielsen, J.B.: Separating random oracle proofs from complexity theoretic proofs: the non-committing encryption case. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 111–126. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  28. [NP99]
    Naor, M., Pinkas, B.: Oblivious transfer with adaptive queries. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 573–590. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  29. [ORS15]
    Ostrovsky, R., Richelson, S., Scafuro, A.: Round-optimal black-box two-party computation. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 339–358. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  30. [Wei73]
    Weiner, P.: Linear pattern matching algorithms. In: SWAT (FOCS), pp. 1–11 (1973)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Faculty of EngineeringBar-Ilan UniversityRamat GanIsrael
  2. 2.Department of Computer ScienceBar-Ilan UniversityRamat GanIsrael

Personalised recommendations