Advertisement

A Tag Based Encoding: An Efficient Encoding for Predicate Encryption in Prime Order Groups

  • Jongkil KimEmail author
  • Willy Susilo
  • Fuchun Guo
  • Man Ho Au
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9841)

Abstract

We introduce a tag based encoding, a new generic framework for modular design of Predicate Encryption (PE) schemes in prime order groups. Our framework is equipped with a compiler which is adaptively secure in prime order groups under the standard Decisional Linear Assumption (DLIN). Compared with prior encoding frameworks in prime order groups which require multiple group elements to interpret a tuple of an encoding in a real scheme, our framework has a distinctive feature which is that each element of an encoding can be represented with only a group element and an integer. This difference allows us to construct a more efficient encryption scheme. In the current literature, the most efficient compiler was proposed by Chen, Gay and Wee (CGW) in Eurocrypt’15. It features one tuple of an encoding into two group elements under the Symmetric External Diffie-Hellman assumption (SXDH). Compared with their compiler, our encoding construction saves the size of either private keys or ciphertexts up-to 25 % and reduces decryption time and the size of public key up-to 50 % in 128 security level. Several new schemes such as inner product encryption with short keys, dual spatial encryption with short keys and hierarchical identity based encryption with short ciphertexts are also introduced as instances of our encoding.

Keywords

Encodings Prime order groups Inner product encryption Spatial encryption Predicate encryption 

References

  1. 1.
    Agrawal, S., Chase, M.: A study of pair encodings: predicate encryption in prime order groups. In: Kushilevitz, E., et al. (eds.) TCC 2016-A. LNCS, vol. 9563, pp. 259–288. Springer, Heidelberg (2016). doi: 10.1007/978-3-662-49099-0_10 CrossRefGoogle Scholar
  2. 2.
    Attrapadung, N.: Dual system encryption via doubly selective security: framework, fully secure functional encryption for regular languages, and more. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 557–577. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  3. 3.
    Attrapadung, N.: Dual system encryption framework in prime-order groups. IACR Cryptology ePrint Archive, 2015:390 (2015)Google Scholar
  4. 4.
    Attrapadung, N., Libert, B.: Functional encryption for public-attribute inner products: achieving constant-size ciphertexts with adaptive security or support for negation. J. Math. Cryptol. 5(2), 115–158 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Attrapadung, N., Yamada, S.: Duality in ABE: converting attribute based encryption for dual predicate and dual policy via computational encodings. In: Nyberg, K. (ed.) CT-RSA 2015. LNCS, vol. 9048, pp. 87–105. Springer, Heidelberg (2015)Google Scholar
  6. 6.
    Beimel, A.: Secure schemes for secret sharing and key distribution. Ph.D. thesis, Israel Institute of Technology, Technion, Haifa, Israel (1996)Google Scholar
  7. 7.
    Chen, C., Zhang, Z., Feng, D.: Fully secure doubly-spatial encryption under simple assumptions. In: Takagi, T., Wang, G., Qin, Z., Jiang, S., Yu, Y. (eds.) ProvSec 2012. LNCS, vol. 7496, pp. 253–263. Springer, Heidelberg (2012)Google Scholar
  8. 8.
    Chen, J., Gay, R., Wee, H.: Improved dual system ABE in prime-order groups via predicate encodings. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 595–624. Springer, Heidelberg (2015)Google Scholar
  9. 9.
    Chen, J., Wee, H.: Fully, (almost) tightly secure IBE and dual system groups. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 435–460. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  10. 10.
    Chen, J., Wee, H.: Dual system groups and its applications - compact HIBE and more. IACR Cryptology ePrint Archive, 2014:265 (2014)Google Scholar
  11. 11.
    Datta, P., Dutta, R., Mukhopadhyay, S.: Fully secure self-updatable encryption in prime order bilinear groups. In: Chow, S.S.M., Camenisch, J., Hui, L.C.K., Yiu, S.M. (eds.) ISC 2014. LNCS, vol. 8783, pp. 1–18. Springer, Heidelberg (2014)Google Scholar
  12. 12.
    Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic framework for Diffie-Hellman assumptions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 129–147. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  13. 13.
    Freeman, D.M.: Converting pairing-based cryptosystems from composite-order groups to prime-order groups. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 44–61. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  14. 14.
    Guillevic, A.: Comparing the pairing efficiency over composite-order and prime-order elliptic curves. In: Jacobson, M., Locasto, M., Mohassel, P., Safavi-Naini, R. (eds.) ACNS 2013. LNCS, vol. 7954, pp. 357–372. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  15. 15.
    Hamburg, M.: Spatial encryption. IACR Cryptology ePrint Archive, 2011:389 (2011)Google Scholar
  16. 16.
    Herold, G., Hesse, J., Hofheinz, D., Ràfols, C., Rupp, A.: Polynomial spaces: a new framework for composite-to-prime-order transformations. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 261–279. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  17. 17.
    Lee, K., Choi, S.G., Lee, D.H., Park, J.H., Yung, M.: Self-updatable encryption: time constrained access control with hidden attributes and better efficiency. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part I. LNCS, vol. 8269, pp. 235–254. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  18. 18.
    Lewko, A.: Tools for simulating features of composite order bilinear groups in the prime order setting. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 318–335. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  19. 19.
    Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure functional encryption: attribute-based encryption and (hierarchical) inner product encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 62–91. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  20. 20.
    Lewko, A.B., Waters, B.: New techniques for dual system encryption and fully secure HIBE with short ciphertexts. In: IACR Cryptology ePrint Archive, 2009:482 (2009)Google Scholar
  21. 21.
    Lewko, A., Waters, B.: New proof methods for attribute-based encryption: achieving full security through selective techniques. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 180–198. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  22. 22.
    Okamoto, T., Takashima, K.: Hierarchical predicate encryption for inner-products. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 214–231. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  23. 23.
    Okamoto, T., Takashima, K.: Fully secure functional encryption with general relations from the decisional linear assumption. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 191–208. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  24. 24.
    Okamoto, T., Takashima, K.: Achieving short ciphertexts or short secret-keys for adaptively secure general inner-product encryption. In: Lin, D., Tsudik, G., Wang, X. (eds.) CANS 2011. LNCS, vol. 7092, pp. 138–159. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  25. 25.
    Okamoto, T., Takashima, K.: Fully secure unbounded inner-product and attribute-based encryption. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 349–366. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  26. 26.
    Ramanna, S.C.: More efficient constructions for inner-product encryption. In: Manulis, M., Sadeghi, A.-R., Schneider, S. (eds.) ACNS 2016. LNCS, vol. 9696, pp. 231–248. Springer, Heidelberg (2016). doi: 10.1007/978-3-319-39555-5_13 CrossRefGoogle Scholar
  27. 27.
    Ramanna, S.C., Chatterjee, S., Sarkar, P.: Variants of waters’ dual system primitives using asymmetric pairings. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 298–315. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  28. 28.
    Seo, J.H.: On the (Im)possibility of projecting property in prime-order setting. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 61–79. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  29. 29.
    Waters, B.: Dual system encryption: realizing fully secure IBE and HIBE under simple assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 619–636. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  30. 30.
    Wee, H.: Dual system encryption via predicate encodings. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 616–637. Springer, Heidelberg (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Jongkil Kim
    • 1
    Email author
  • Willy Susilo
    • 1
  • Fuchun Guo
    • 1
  • Man Ho Au
    • 2
  1. 1.Centre of Computer and Information Security Research, School of Computing and Information TechnologyUniversity of WollongongWollongongAustralia
  2. 2.The Hong Kong Polytechnic UniversityHung HomHong Kong

Personalised recommendations