Skip to main content

Interconnect Quality and Reliability of 3D Packaging

  • Chapter
  • First Online:
3D Microelectronic Packaging

Part of the book series: Springer Series in Advanced Microelectronics ((MICROELECTR.,volume 57))

Abstract

Quality and reliability aspects of 3D IC and packages are discussed in this chapter. The main focuses are interconnects-related quality and reliability issues. For the 3D packages, interconnects may include microbump, TSV, UBM, copper traces, etc. We compare them to the quality and reliability concerns observed in the existing interconnects, as well as the methodology to predict the field performances. We shall cover microstructure changes and failures driven by mechanical stressing, electromigration (EM), and thermomigration (TM). This way we can see how the transition, for example, from C-4 joints to microbumps may affect the failure modes. On mechanical stressing, we emphasize the brittle nature as well as microvoid formation, especially Kirkendall void formation in microbumps. A string of voids in a brittle material can easily lead to fracture damage. The interest in mechanical failures is because for mobile and wearable devices, the frequency of impact and dropping to the ground is high. On EM and TM in microbumps and TSV, we emphasize the enhanced failure mode due to Joule heating.

Recent job change to Apple inc

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K.N. Tu, Reliability challenges in 3D IC packaging technology. Microelectron. Reliab. 51(3), 517–523 (2011)

    Article  Google Scholar 

  2. Y. Wang, I.M. De Rosa, K.N. Tu, Size effect on ductile-to-brittle transition in Cu-solder-Cu micro-joints. In 2015 Proceedings of 65th Electronic components and Technology Conference, San Diego, CA, 2015, pp. 632–639

    Google Scholar 

  3. S.F. Choudhury, L. Ladani, Grain growth orientation and anisotropy in Cu6Sn5 intermetallic: nanoindentation and electron backscatter diffraction analysis. J. Electron. Mater. 43(4), 996–1004 (2014)

    Article  Google Scholar 

  4. K. Sakuma, K. Sueoka, S. Kohara, K. Matsumoto, H. Noma, T. Aoki, Y. Oyama, H. Nishiwaki, P.S. Andry, C.K. Tsang, J.U. Knickerbocker, Y. Orii, IMC bonding for 3D interconnection. In 2010 Proceedings 60th Electronic Components and Technology Conference, Las Vegas, NV, 2010, pp. 864–871

    Google Scholar 

  5. K. Sakuma, K. Tunga, B. Webb, An enhanced thermo-compression bonding process to address warpage in 3D integration of large die on organic substrates. In Proceedings of Electronic Components and Technology Conference, San Diego, CA, 2015, pp. 318–324

    Google Scholar 

  6. L. Li, P. Su, J. Xue, M. Brillhart, J. Lau, P.J. Tzeng, C.K. Lee, C.J. Zhan, M.J. Dai, H.C. Chien, S.T. Wu, Addressing bandwidth challenges in next generation high performance network systems with 3D IC integration. In Proceedings of Electronic Components and Technology Conference, San Diego, CA, 2012, pp. 1040–1046

    Google Scholar 

  7. C.C. Lee, P.J. Wang, J.S. Kim, Are intermetallics in solder joints really brittle? In Proceedings of Electronic Components and Technology Conference, Reno, NV, 2007, pp. 648–652

    Google Scholar 

  8. P.F. Yang, Y.S. Lai, S.R. Jian, J. Chen, R.S. Chen, Nanoindentation identifications of mechanical properties of Cu6Sn5, Cu3Sn, and Ni3Sn4 intermetallic compounds derived by diffusion couples. Mater. Sci. Eng. A 485(1–2), 305–310 (2008)

    Article  Google Scholar 

  9. L. Jiang, N. Chawla, Mechanical properties of Cu6Sn5 intermetallic by micropillar compression testing. Scr. Mater. 63(5), 480–483 (2010)

    Article  Google Scholar 

  10. R.R. Chromik, R.P. Vinci, S.L. Allen, M.R. Notis, Nanoindentation measurements on Cu–Sn and Ag–Sn intermetallics formed in Pb-free solder joints. J. Mater. Res. 18(09), 2251–2261 (2003)

    Article  Google Scholar 

  11. R. Schwaiger, B. Moser, M. Dao, N. Chollacoop, S. Suresh, Some critical experiments on the strain-rate sensitivity of nanocrystalline nickel. Acta Mater. 51(17), 5159–5172 (2003)

    Article  Google Scholar 

  12. X. Deng, N. Chawla, K.K. Chawla, M. Koopman, Deformation behavior of (Cu, Ag)-Sn intermetallics by nanoindentation. Acta Mater. 52(14), 4291–4303 (2004)

    Article  Google Scholar 

  13. G. Ghosh, Elastic properties, hardness, and indentation fracture toughness of intermetallics relevant to electronic packaging. J. Mater. Res. 19(5), 1439–1454 (2004)

    Article  Google Scholar 

  14. Granta Design Ltd, CES 2016 Selector materials selection software (2016)

    Google Scholar 

  15. R.A. Mirshams, C.H. Xiao, S.H. Whang, W.M. Yin, R-curve characterization of the fracture toughness of nanocrystalline nickel thin sheets. Mater. Sci. Eng. A 315(1–2), 21–27 (2001)

    Article  Google Scholar 

  16. T.-T. Luu, N. Hoivik, K. Wang, K.E. Aasmundtveit, A.-S.B. Vardøy, High-temperature mechanical integrity of Cu-Sn SLID wafer-level bonds. Metall. Mater. Trans. A 46(11), 5266–5274 (2015)

    Article  Google Scholar 

  17. H.Y. Chuang, T.L. Yang, M.S. Kuo, Y.J. Chen, J.J. Yu, C.C. Li, C.R. Kao, Critical concerns in soldering reactions arising from space confinement in 3-D IC packages. IEEE Trans. Dev. Mater. Reliab. 12(2), 233–240 (2012)

    Article  Google Scholar 

  18. K. Tanida, M. Umemoto, N. Tanaka, Y. Tomita, K. Takahashi, Micro Cu bump interconnection on 3D chip stacking technology. Jpn. J. Appl. Phys. 43(4B), 2264–2270 (2004)

    Article  Google Scholar 

  19. J.F. Li, P.a. Agyakwa, C.M. Johnson, Interfacial reaction in Cu/Sn/Cu system during the transient liquid phase soldering process. Acta Mater. 59(3), 1198–1211 (2011)

    Article  Google Scholar 

  20. S.J. Wang, L.H. Hsu, N.K. Wang, C.E. Ho, EBSD investigation of Cu-Sn IMC microstructural evolution in Cu/Sn-Ag/Cu microbumps during isothermal annealing. J. Electron. Mater. 43(1), 219–228 (2014)

    Article  Google Scholar 

  21. K. Zeng, R. Stierman, T.C. Chiu, D. Edwards, K. Ano, K.N. Tu, Kirkendall void formation in eutectic SnPb solder joints on bare Cu and its effect on joint reliability. J. Appl. Phys. 97(2), 24508 (2005)

    Google Scholar 

  22. J. Yu, J.Y. Kim, Effects of residual S on Kirkendall void formation at Cu/Sn-3.5Ag solder joints. Acta Mater. 56(19), 5514–5523 (2008)

    Article  Google Scholar 

  23. K.-N. Tu, Solder Joint Technology (Springer, New York, 2007)

    Google Scholar 

  24. K. Nogita, T. Nishimura, Nickel-stabilized hexagonal (Cu, Ni)6Sn5 in Sn–Cu–Ni lead-free solder alloys. Scr. Mater. 59(2), 191–194 (2008)

    Article  Google Scholar 

  25. H. Zhang, E. Perfecto, V.L. Calero-DdelC, F. Pompeo, An effective method for full solder intermetallic compound formation and Kirkendall void control in Sn-base solder micro-joints. In 2015 I.E. 65th Electronic Components and Technology Conference, San Diego, CA, 2015, pp. 1695–1700

    Google Scholar 

  26. W.-L. Chiu, C.-M. Liu, Y.-S. Haung, C. Chen, Formation of nearly void-free Cu3Sn intermetallic joints using nanotwinned Cu metallization., Appl. Phys. Lett. 104(17), 171902 (2014)

    Google Scholar 

  27. Y. Liu, J. Wang, L. Yin, P. Kondos, C. Parks, P. Borgesen, D.W. Henderson, E.J. Cotts, N. Dimitrov, Influence of plating parameters and solution chemistry on the voiding propensity at electroplated copper-solder interface: plating in acidic copper solution with and without polyethylene glycol. J. Appl. Electrochem. 38(12), 1695–1705 (2008)

    Article  Google Scholar 

  28. J.H.L. Pang, Effect of intermetallic and Kirkendall voids growth on board level drop Reliability for SnAgCu lead-free BGA solder joint. In 56th Electronic Components and Technology Conference 2006, San Diego, CA, 2006, pp. 275–282

    Google Scholar 

  29. Y. Wang, S.-H. Chae, R. Dunne, Y. Takahashi, K. Mawatari, P. Steinmann, T. Bonifield, T. Jiang, J. Im, P.S. Ho, Effect of intermetallic formation on electromigration reliability of TSV-microbump joints in 3D interconnect. In 2012 I.E. 62nd Electronic Components and Technology Conference, San Diego, CA, 2012, pp. 319–325

    Google Scholar 

  30. I. Panchenko, K. Croes, I. De Wolf, J. De Messemaeker, E. Beyne, K.J. Wolter, Degradation of Cu6Sn5 intermetallic compound by pore formation in solid-liquid interdiffusion Cu/Sn microbump interconnects. Microelectron. Eng. 117, 26–34 (2014)

    Article  Google Scholar 

  31. L. Mo, Z. Chen, F. Wu, C. Liu, Microstructural and mechanical analysis on Cu–Sn intermetallic micro-joints under isothermal condition. Intermetallics 66, 13–21 (2015)

    Article  Google Scholar 

  32. C. Chen, D. Yu, K. Chen, Vertical interconnects of microbumps in 3D integration. MRS Bull. 40(March), 257–263 (2015)

    Google Scholar 

  33. Y. Wang, Mechanical reliabilities of porous type Cu/Cu3Sn/Cu micro-joints. Unpublished Manuscript (2016)

    Google Scholar 

  34. J.O. Suh, K.N. Tu, N. Tamura, Dramatic morphological change of scallop-type Cu6Sn5 formed on (001) single crystal copper in reaction between molten SnPb solder and Cu. Appl. Phys. Lett. 91(5), 051907 (2007)

    Google Scholar 

  35. J.O. Suh, K.N. Tu, N. Tamura, Preferred orientation relationship between Cu6Sn5 scallop-type grains and Cu substrate in reactions between molten Sn-based solders and Cu. J. Appl. Phys. 102(6), 063511 (2007)

    Google Scholar 

  36. Y. Tian, R. Zhang, C. Hang, L. Niu, C. Wang, Relationship between morphologies and orientations of Cu6Sn5 grains in Sn3.0Ag0.5Cu solder joints on different Cu pads. Mater. Charact. 88(100), 58–68 (2014)

    Article  Google Scholar 

  37. H.F. Zou, H.J. Yang, Z.F. Zhang, Morphologies, orientation relationships and evolution of Cu6Sn5 grains formed between molten Sn and Cu single crystals. Acta Mater. 56, 2649–2662 (2008)

    Article  Google Scholar 

  38. M. Li, M. Yang, J. Kim, Textured growth of Cu6Sn5 grains formed at a Sn3.5Ag/Cu interface. Mater. Lett. 66(1), 135–137 (2012)

    Article  Google Scholar 

  39. G. Hariharan, R. Chaware, I. Singh, J. Lin, L. Yip, K. Ng, S.Y. Pai, A comprehensive reliability study on a CoWoS 3D IC package. In 2015 I.E. 65th Electronic Components and Technology Conference (ECTC), San Diego, CA, 2015, pp. 573–577

    Google Scholar 

  40. Y.T. Chen, Chemical effect on diffusion in intermetallic compounds. Ph.D. thesis, University of California, Los Angeles, 2016

    Google Scholar 

  41. C.C. Lee, T.-F. Yang, C.-S. Wu, K.-S. Kao, R.-C. Cheng, T.-H. Chen, Reliability estimation and failure mode prediction for 3D chip stacking package with the application of wafer-level underfill. Microelectron. Eng. 107, 107–113 (2013)

    Article  Google Scholar 

  42. H.H. Hsu, S.-Y. Huang, T.-C. Chang, A.T. Wu, Nucleation and propagation of voids in microbumps for 3 dimensional integrated circuits. Appl. Phys. Lett. 99(25), 251913 (2011)

    Google Scholar 

  43. H.B. Huntington, A.R. Grone, Current-induced marker motion in gold wires. J. Phys. Chem. Solids 20(1), 76–87 (1961)

    Article  Google Scholar 

  44. I.A. Blech, Electromigration in thin aluminum films on titanium nitride. J. Appl. Phys. 47(4), 1203–1208 (1976)

    Article  Google Scholar 

  45. C.K. Hu, K.P. Rodbell, T.D. Sullivan, K.Y. Lee, D.P. Bouldin, Electromigration and stress-induced voiding in fine Al and Al-alloy thin-film lines. IBM J. Res. Dev. 39(4), 465–497 (1995)

    Article  Google Scholar 

  46. C.K. Hu, M.B. Small, P.S. Ho, Electromigration in Al(Cu) two-level structures: effect of Cu and kinetics of damage formation. J. Appl. Phys. 74(2), 969–978 (1993)

    Article  Google Scholar 

  47. C.K. Hu, P.S. Ho, M.B. Small, Electromigration in two-level interconnect structures with Al alloy lines and W studs. J. Appl. Phys. 72(1), 291–293 (1992)

    Article  Google Scholar 

  48. E.T. Ogawa, K.D. Lee, V.A. Blaschke, P.S. Ho, Electromigration reliability issues in dual-damascene Cu interconnections. IEEE Trans. Reliab. 51(4), 403–419 (2002)

    Article  Google Scholar 

  49. Y. Morand, Copper metallization for advanced IC: requirements and technological solutions. Microelectron. Eng. 50(1–4), 391–401 (2000)

    Article  Google Scholar 

  50. H. Helneder, H. Korner, A. Mitchell, M. Schwerd, U. Seidel, Comparison of copper damascene and aluminum RIE metallization in BICMOS technology. Microelectron. Eng. 55(1–4), 257–268 (2001)

    Article  Google Scholar 

  51. C.K. Hu, R. Rosenberg, H. Rathore, D. Nguyen, B. Agarwala, Scaling effect in electromigration of on-chip Cu wiring. Interconnect technology 1999. In IEEE International Conference, San Francisco, CA, 1999, pp. 267–269

    Google Scholar 

  52. E.C.C. Yeh, W.J. Choi, K.N. Tu, P. Elenius, H. Balkan, Current-crowding-induced electromigration failure in flip chip solder joints. Appl. Phys. Lett. 80(4), 580–582 (2002)

    Article  Google Scholar 

  53. L. Zhang, S. Ou, J. Huang, K.N. Tu, S. Gee, L. Nguyen, Effect of current crowding on void propagation at the interface between intermetallic compound and solder in flip chip solder joints. Appl. Phys. Lett. 88(1), 012106 (2006)

    Google Scholar 

  54. K.N. Tu, C.C. Yeh, C.Y. Liu, C. Chen, Effect of current crowding on vacancy diffusion and void formation in electromigration, Appl. Phys. Lett. 76(8), 988 (2000)

    Google Scholar 

  55. F.Y. Ouyang, H. Hsu, Y.P. Su, T.C. Chang, Electromigration induced failure on lead-free micro bumps in three-dimensional integrated circuits packaging. J. Appl. Phys. 112(2), 023505 (2012)

    Google Scholar 

  56. R. Labie, P. Limaye, K. Lee, C. Berry, E. Beyne, I. De Wolf. Reliability testing of Cu-Sn intermetallic micro-bump interconnections for 3D-device stacking. In 3rd Electronic System Integration Technology Conference (ESTC), Berlin, 2010, pp. 1–5

    Google Scholar 

  57. R. Labie, W. Ruythooren, K. Baert, E. Beyne, B. Swinnen, Resistance to electromigration of purely intermetallic micro-bump interconnections for 3D-device stacking. In 2008 I.E. International Interconnect Technology Conference (IITC), Burlingame, CA, 2008, pp. 19–21

    Google Scholar 

  58. Y.M. Lin, C.-J. Zhan, J.-Y. Juang, J.H. Lau, T.-H. Chen, R. Lo, M. Kao, T. Tian, K.-N. Tu, Electromigration in Ni/Sn intermetallic micro bump joint for 3D IC chip stacking. In 2011 I.E. 61st Electronic Components and Technology Conference, Lake Buena Vista, FL, 32011, pp. 351–357

    Google Scholar 

  59. C.C. Wei, C.H. Yu, C.H. Tung, R.Y. Huang, C.C. Hsieh, C.C. Chiu, H.Y. Hsiao, Y.W. Chang, C.K. Lin, Y.C. Liang, C. Chen, T.C. Yeh, L.C. Lin, D.C.H. Yu, Comparison of the electromigration behaviors between micro-bumps and C4 solder bumps. In Proceedings Electronic Components and Technology Conference, Lake Buena Vista, FL, 2011, pp. 706–710

    Google Scholar 

  60. H. You, Y. Lee, S. Lee, J. Kang, Reliability of 20 μm micro bump interconnects. In 2011 I.E. 61st Electronic Components and Technology Conference (ECTC ), Lake Buena Vista, FL, 2011, pp. 608–611

  61. S.Y. Huang, C.J. Zhan, Y.W. Huang, Y.M. Lin, C.W. Fan, S.C. Chung, K.S. Kao, J.Y. Chang, M.L. Wu, T.F. Yang, J.H. Lau, T.H. Chen, Effects of UBM structure/material on the reliability performance of 3D chip stacking with 30 μm-pitch solder micro bump interconnections. In Proceedings Electronic Components and Technology Conference, San Diego, CA, 2012, pp. 1287–1292

    Google Scholar 

  62. N. Tanaka, T. Sato, Y. Yamaji, T. Morifuji, M. Umemoto, K. Takahashi, Mechanical effects of copper through-vias in a 3D die-stacked module. In Proceedings of 52nd Electronic Components and Technology Conference 2002, no. 2, pp. 473–479

    Google Scholar 

  63. J. Zhang, M.O. Bloomfield, J.Q. Lu, R.J. Gutmann, T.S. Cale, Modeling thermal stresses in 3-D IC interwafer interconnects. IEEE Trans. Semicond. Manuf. 19(4), 437–448 (2006)

    Article  Google Scholar 

  64. K.H. Lu, S.K. Ryu, Q. Zhao, X. Zhang, J. Im, R. Huang, P.S. Ho, Thermal stress induced delamination of through silicon vias in 3-D interconnects. In Proceedings Electronic Components and Technology Conference, Las Vegas, NV, 2010, pp. 40–45

    Google Scholar 

  65. J. Pak, M. Pathak, S. K. Lim, and D. Z. Pan, Modeling of electromigration in through-silicon-via based 3D IC. In 2011 I.E. 61st Electronic Components and Technology Conference (ECTC ), Lake Buena Vista, FL, 2011, pp. 1420–1427

  66. Z. Chen, Z. Lv, X.F. Wang, Y. Liu, S. Liu, Modeling of electromigration of the through silicon via interconnects. In 2010 11th International Conference on electronic Packaging Technology & High Density Packaging (ICEPT-HDP ), Xi’an, 2010, pp. 1221–1225

  67. Y.C. Tan, C.M. Tan, X.W. Zhang, T.C. Chai, D.Q. Yu, Electromigration performance of through silicon via (TSV)—a modeling approach. Microelectron. Reliab. 50(9–11), 1336–1340 (2010)

    Article  Google Scholar 

  68. T. Frank, S. Moreau, C. Chappaz, L. Arnaud, P. Leduc, A. Thuaire, L. Anghel, Electromigration behavior of 3D-IC TSV interconnects. Proc. Electron. Compon. Technol. Conf. 3(1), 326–330 (2012)

    Google Scholar 

  69. T. Frank, S. Moreau, C. Chappaz, P. Leduc, L. Arnaud, A. Thuaire, E. Chery, F. Lorut, L. Anghel, G. Poupon, Reliability of TSV interconnects: electromigration, thermal cycling, and impact on above metal level dielectric. Microelectron. Reliab. 53(1), 17–29 (2013)

    Article  Google Scholar 

  70. S. Moreau, D. Bouchu, Reliability of dual damascene TSV for high density integration: the electromigration issue. IEEE Int. Reliab. Phys. Symp. Proc. 33, 1–5 (2013)

    Google Scholar 

  71. H.J. Choi, S.M. Choi, M.S. Yeo, S.D. Cho, D.C. Baek, J. Park, An experimental study on the TSV reliability: electromigration (EM) and time dependant dielectric breakdown (TDDB). In 2012 I.E. International Interconnect Technology Conference , San Jose, CA, 2012, pp. 4–6

  72. Y. Liu, M. Li, D.W. Kim, S. Gu, K.N. Tu, Synergistic effect of electromigration and Joule heating on system level weak-link failure in 2.5D integrated circuits. J. Appl. Phys. 118(13),135304 (2015)

    Google Scholar 

  73. K. Chen, K. Tu, Guest Editors, Materials challenges in three-dimensional integrated circuits. MRS Bull. 40, 219–222 (2015)

    Article  Google Scholar 

  74. A.T. Huang, A.M. Gusak, K.N. Tu, Y.S. Lai, Thermomigration in SnPb composite flip chip solder joints. Appl. Phys. Lett. 88(14), 1–4 (2006)

    Article  Google Scholar 

  75. A.T. Huang, K.N. Tu, Y.S. Lai, Effect of the combination of electromigration and thermomigration on phase migration and partial melting in flip chip composite SnPb solder joints. J. Appl. Phys. 100(3) (2006)

    Google Scholar 

  76. D. Yang, Y.C. Chan, B.Y. Wu, M. Pecht, Electromigration and thermomigration behavior of flip chip solder joints in high current density packages. J. Mater. Res. 23(9), 2333–2339 (2011)

    Article  Google Scholar 

  77. F.Y. Ouyang, K.N. Tu, Y.S. Lai, A.M. Gusak, Effect of entropy production on microstructure change in eutectic SnPb flip chip solder joints by thermomigration. Appl. Phys. Lett. 89(22), 26–29 (2006)

    Article  Google Scholar 

  78. F.Y. Ouyang, C.L. Kao, In situ observation of thermomigration of Sn atoms to the hot end of 96.5Sn-3Ag-0.5Cu flip chip solder joints. J. Appl. Phys. 110(12) (2011)

    Google Scholar 

  79. K. Tu, Electronic Thin-Film Reliability (Cambridge University Press, Cambridge, 2010)

    Book  Google Scholar 

  80. H. Ye, C. Basaran, D. Hopkins, Thermomigration in Pb-Sn solder joints under joule heating during electric current stressing. Appl. Phys. Lett. 82(7), 1045–1047 (2003)

    Article  Google Scholar 

  81. H.Y. Hsiao, C. Chen, Thermomigration in Pb-free SnAg solder joint under alternating current stressing. Appl. Phys. Lett. 94(9), 2007–2010 (2009)

    Article  Google Scholar 

  82. H.Y. Chen, C. Chen, In-situ observation of the failure induced by thermomigration of interstitial Cu in Pb-free flip chip solder joints. In 2009 59th Electronic Components and Technology Conference , San Diego, CA, 2009, pp. 319–324

  83. X. Gu, K.C. Yung, Y.C. Chan, D. Yang, Thermomigration and electromigration in Sn8Zn3Bi solder joints. J. Mater. Sci. Mater. Electron. 22(3), 217–222 (2011)

    Article  Google Scholar 

  84. C. Chen, H.M. Tong, K.N. Tu, Electromigration and thermomigration in Pb-free flip-chip solder joints. Annu. Rev. Mater. Res. 40(1), 531–555 (2010)

    Article  Google Scholar 

  85. M.Y. Guo, C.K. Lin, C. Chen, K.N. Tu, Asymmetrical growth of Cu6Sn5 intermetallic compounds due to rapid thermomigration of Cu in molten SnAg solder joints. Intermetallics 29, 155–158 (2012)

    Article  Google Scholar 

  86. F.Y. Ouyang, W.C. Jhu, T.C. Chang, Thermal-gradient induced abnormal Ni3Sn4 interfacial growth at cold side in Sn2.5Ag alloys for three-dimensional integrated circuits. J. Alloys Compd. 580(580), 114–119 (2013)

    Article  Google Scholar 

  87. F.Y. Ouyang, W.C. Jhu, Comparison of thermomigration behaviors between Pb-free flip chip solder joints and microbumps in three dimensional integrated circuits: bump height effect. J. Appl. Phys. 113(4), 043711 (2013)

    Google Scholar 

  88. C.J. Meechan, G.W. Lehman, Diffusion of Au and Cu in a temperature gradient. J. Appl. Phys. 33(2), 634–641 (1962)

    Article  Google Scholar 

Download references

Acknowledgment

The editors would like to thank Indranath Dutta from Washington State University and Tae-Kyu Lee from Portland State University for their critical review of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luhua Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Wang, Y., Liu, Y., Li, M., Tu, K.N., Xu, L. (2017). Interconnect Quality and Reliability of 3D Packaging. In: Li, Y., Goyal, D. (eds) 3D Microelectronic Packaging. Springer Series in Advanced Microelectronics, vol 57. Springer, Cham. https://doi.org/10.1007/978-3-319-44586-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44586-1_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44584-7

  • Online ISBN: 978-3-319-44586-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics