Skip to main content
Book cover

Fiber Plants pp 127–153Cite as

Cotton Fiber Biotechnology : Potential Controls and Transgenic Improvement of Elongation and Cell Wall Thickening

  • Chapter
  • First Online:

Part of the book series: Sustainable Development and Biodiversity ((SDEB,volume 13))

Abstract

Cotton is grown on five continents as an economically important crop. Its long, fine, seed fibers are one of the most highly used natural fibers, providing a high-quality spinnable fiber to the textile industry. The cotton fiber undergoes a complex, staged developmental program, resulting in a single cell that is 1.8–5 cm long with a thick wall composed of about 95 % cellulose. Biotechnological improvements have either directly or indirectly enhanced the fiber properties that are important for spinning, including length, bundle strength, and maturity. These experiments have generally targeted carbohydrate metabolism, cell wall structure, and hormone signaling. In this chapter, we present a brief review of cotton fiber development with a focus on processes affecting elongation and cell wall thickening. We discuss rigorous criteria for evaluating studies on transgenic cotton fiber and mention the challenges of performing such research in the public sector. We highlight selected genetic engineering experiments that have resulted in improved cotton fiber quality and discuss future prospects for use of biotechnology to improve cotton fiber and its competitiveness with synthetic fibers.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abasolo W, Michaela E, Yamauchi K, Obel N, Reinecke A, Neumettzler L, Dunlop JW, Mouille G, Pauly M, Höfte H et al (2009) Pectin may hinder the unfolding of xyloglucan chains during cell deformation: Implications of the mechanical performance of Arabidopsis hypocotyls with pectin alterations. Mol Plant 2:990–999

    Article  CAS  PubMed  Google Scholar 

  • Abdurakhmonov IY, Buriev ZT, Saha S, Jenkins JN, Abdukarimov A, Pepper AE (2014) Phytochrome RNAi enhances major fibre quality and agronomic traits of the cotton Gossypium hirsutum L. Nat Commun 5:3062

    Article  PubMed  CAS  Google Scholar 

  • Abidi N, Cabrales L, Hequet E (2010) Fourier transform infrared spectroscopic approach to the study of the secondary cell wall development in cotton fiber. Cellulose 17:309–320

    Article  CAS  Google Scholar 

  • Aleman L, Kitamura J, Abdel-Mageed H, Lee J, Sun Y, Nakajima M, Ueguchi-Tanaka M, Matsuoka M, Allen RA (2008) Functional analysis of cotton orthologs of GA signal transduction factors GID1 and SLR1. Plant Mol Biol 68:1–16

    Article  CAS  PubMed  Google Scholar 

  • Amor Y, Haigler CH, Johnson S, Wainscott M, Delmer DP (1995) A membrane-associated form of sucrose synthase and its potential role in synthesis of cellulose and callose in plants. Proc Natl Acad Sci USA 92:9353–9357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Avci U, Pattahil S, Singh B, Brown VL, Hahn MG, Haigler CH (2013) Cotton fiber cell walls of Gossypium hirsutum and Gossypium barbadense have differences related to loosely bound xyloglucan. PLoS ONE 8:e56315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bai W, Xiao Y, Zhao J, Song S, Hu L, Zeng J, Li X, Hou L, Luo M, Li D (2014) Gibberellin overproduction promotes sucrose synthase expression and secondary cell wall deposition in cotton fibers. PLoS ONE 9:e96537

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Beasley CA, Ting IP (1973) The effects of plant growth substances on in vitro fiber development from fertilized cotton ovules. Am J Bot 60:130–139

    Article  CAS  Google Scholar 

  • Betancur L, Singh B, Rapp RA, Wendel JF, Marks MD, Roberts AW, Haigler CH (2010) Phylogenetically distinct cellulose synthase genes support secondary wall thickening in Arabidopsis shoot trichomes and cotton fiber. J Integr Plant Biol 52:205–220

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharjee S (2012) The language of reactive oxygen species signaling in plants. J Bot. Article ID 985298

    Google Scholar 

  • Bleecker AB, Kende H (2000) Ethylene: a gaseous signal molecule in plants. Annu Rev Cell Dev Biol 16:1–18

    Article  CAS  PubMed  Google Scholar 

  • Bowling AJ, Vaughn KC, Turley RB (2011) Polysaccharides and glycoprotein distribution in the epidermis of cotton ovules during early fiber initiation and growth. Protoplasma 248:579–590

    Article  CAS  PubMed  Google Scholar 

  • Boyer JS (2009) Cell wall biosynthesis and the molecular mechanism of plant enlargement. Funct Plant Biol 36:383–394

    Article  CAS  Google Scholar 

  • Briggs WR, Olney MA (2001) Photoreceptors in plant photomorphogenesis to date. Five phytochromes, two cryptochromes, one phototropin, and one superchrome. Plant Physiol 125:85–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brill E, van Thournout M, White RG, Llewellyn D, Campbell PM, Engelen S, Ruan Y-L, Arioli T, Furbank RT (2011) A novel isoform of sucrose synthase is targeted to the cell wall during secondary cell wall synthesis in cotton fiber. Plant Physiol 157:40–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaudhary B, Hovav R, Flagel L, Mittler R, Wendel JF (2009) Parallel expression evolution of oxidative stress-related genes in fiber from wild and domesticated diploid and polyploid cotton (Gossypium). BMC Genom 10:378

    Article  CAS  Google Scholar 

  • Clark G, Torres J, Finlayson S, Guan X, Handley C, Lee J, Kays JE, Chen ZJ, Roux SJ (2009) Apyrase (nucleoside triphosphate-diphosphohydrolase) and extracellular nucleotides regulate cotton fiber elongation in cultured ovules. Plant Physiol 152:1073–1083

    Article  PubMed  CAS  Google Scholar 

  • Constable G, Llewellyn D, Walford SA, Clement JD (2015) Cotton breeding for fiber quality improvement. In: Cruz VMV, Dierig DA (eds) Industrial crops, handbook of plant breeding, vol 9. Springer, New York, pp 191–232

    Google Scholar 

  • Cosgrove DJ (2005) Growth of the plant cell wall. Nat Rev Mol Cell Bio 6:850–861

    Article  CAS  Google Scholar 

  • Cotton Incorporated (2014) 2013 Cotton crop quality summary. http://www.cottoninc.com/fiber/quality/Crop-Quality-Reports/2013-Cotton-Crop-Quality-Summary/. Accessed 29 June 2015

  • D’Halluin K, Vanderstraeten C, Hulle J, Rosolowska J, Den Brande I, Pennewaert A, D’Hont K, Bossut M, Jantz D, Ruiter R, Broadhvest J (2013) Targeted molecular trait stacking in cotton through targeted double-strand break induction. Plant Biotechnol J 11(8):933–941

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dasani SH, Thaker VS (2006) Role of abscisic acid in cotton fiber development. Russ J Plant Physiol 53:62–67

    Article  CAS  Google Scholar 

  • Dhindsa RS, Beasley CA, Ting IP (1976) Effects of abscisic acid on in vitro growth of cotton fiber. Planta (Berl) 130:197–201

    Article  CAS  Google Scholar 

  • Dillehay TD, Rossen J, Andres T, Williams DE (2007) Preceramic adoption of peanut, squash, and cotton in Northern Peru. Science 316:1890–1893

    Article  CAS  PubMed  Google Scholar 

  • Farr WK (1931) Cotton fibers. I. Origin and early stages of elongation. Contrib Boyce Thompson Inst 3:441–458

    Google Scholar 

  • Haigler CH, Ivanova-Datcheva M, Hogan PS, Salnikov VV, Hwang S, Martin K, Delmer DP (2001) Carbon partitioning to cellulose synthesis. Plant Mol Biol 47:29–51

    Article  CAS  PubMed  Google Scholar 

  • Haigler CH, Zhang D, Wilkerson CG (2005) Biotechnological improvement of cotton fiber maturity. Physiol Plant 124:285–294

    Article  CAS  Google Scholar 

  • Haigler CH, Singh B, Zhang D, Hwang S, Wu C, Cai WX, Hozain M, Kang W, Kiedaisch B, Strauss RE, Hequet EF, Wyatt BG, Jividen GM, Holaday AS (2007) Transgenic cotton over-producing spinach sucrose phosphate synthase showed enhanced leaf sucrose synthesis and improved fiber quality under controlled environmental conditions. Plant Mol Biol 63(6):815–832

    Article  CAS  PubMed  Google Scholar 

  • Haigler CH (2007) Substrate supply for cellulose synthesis and its stress sensitivity in the cotton fiber. In: Brown RM Jr, Saxena I (eds) Cellulose: molecular and structural biology. Springer, New York, pp 145–166

    Google Scholar 

  • Haigler CH, Singh B, Wang G, Zhang D (2009) Genomics of cotton fiber secondary wall deposition and cellulose biogenesis. In: Paterson AH (ed) Genetics and genomics of cotton. Plant genetics/genomics. Springer, New York, pp 385–417

    Chapter  Google Scholar 

  • Haigler CH, Betancur L, Stiff MR, Tuttle JR (2012) Cotton fiber: a powerful single-cell model for cell wall and cellulose research. Front Plant Sci 3:1–7

    Article  CAS  Google Scholar 

  • Han LB, Li YB, Wang HY, Wu XM, Li CL, Luo M, Wu SJ, Kong ZS, Pei Y, Jiao GL, Xia GX (2013) The dual functions of WLIM1a in cell elongation and secondary wall formation in developing cotton fibers. Plant Cell 25:4421–4438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han J, Tan J, Tu L, Zhang X (2014) A peptide hormone gene, GhPSK promotes fibre elongation and contributes to longer and finer cotton fibre. Plant Biotechnol J 12:861–871

    Article  CAS  PubMed  Google Scholar 

  • Han XZ, Gao S, Cheng YN, Sun YZ, Liu W, Tang LL, Ren DM (2012) Protective effect of naringenin-7-O-glucoside against oxidative stress induced by doxorubicin in H9c2 cardiomyocytes. Biosci Trends 6:19–25

    CAS  PubMed  Google Scholar 

  • Hinchliffe DJ, Meredith WR, Yeater KM, Kim HJ, Woodward AW, Chen ZJ, Triplett BA (2010) Near-isogenic cotton germplasm lines that differ in fiber-bundle strength have temporal differences in fiber gene expression patterns as revealed by comparative high-throughput profiling. Theor Appl Genet 120:1347–1366

    Article  CAS  PubMed  Google Scholar 

  • Hinchliffe DJ, Meredith WR, Delhorn CD, Thibodeaux DP, Fang DD (2011) Elevated growing degree days influence transition stage timing during cotton fiber development resulting in increased fiber-bundle strength. Crop Sci 51:1683–1692

    Article  Google Scholar 

  • Hovav R, Udall JA, Chaudhary B et al (2008) The evolution of spinnable cotton fiber entailed prolonged development and a novel metabolism. PLoS Genet 4:e25

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hsieh Y-L (1999) Structural development of cotton fibers and linkages to fiber quality. In: Basra AS (ed) Cotton fibers: developmental biology, quality improvement, and textile processing. Haworth Press, New York, pp 137–165

    Google Scholar 

  • Hu G, Koh J, Yoo M-J, Grupp K, Chen S, Wendel JF (2013) Proteomic profiling of developing cotton fibers from wild and domesticated Gossypium barbadense. New Phytol 2013:1–13

    Google Scholar 

  • Huang QS, Wang HY, Gao P, Wang G-Y, Xia G-X (2008) Cloning and characterization of a calcium dependent protein kinase gene associated with cotton fiber development. Plant Cell Rep 27:1869–1875

    Article  CAS  PubMed  Google Scholar 

  • Jiang Y, Guo W, Zhu H, Ruan Y, Zhang T (2012) Overexpression of GhSusA1 increases plant biomass and improves cotton fiber yield and quality. Plant Biotechnol J 10:301–312

    Article  CAS  PubMed  Google Scholar 

  • Kasperbauer MJ (2000) Cotton fibre length is affected by far-red light impinging on developing bolls. Crop Sci 40:1673–1678

    Article  Google Scholar 

  • Kim HJ (2015) Fiber biology. In: Fang DD, Percy RG (eds) Cotton, 2nd edn. ASA, CSSA, and SSSA, Madison, pp 1–31

    Google Scholar 

  • Kosmidou-Dimitropoulou K (1986) Hormonal influences in fiber development. In: Mauney JR, Stewart JM (eds) Cotton physiology. The Cotton Foundation, Memphis, pp 361–374

    Google Scholar 

  • Kudla J, Batistič O, Hashimoto K (2010) Calcium signals: the lead currency of plant information processing. Plant Cell 22:541–563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee CM, Kafle K, Belias DW, Park YB, Glick RE, Haigler CH, Kim SH (2015) Comprehensive analysis of cellulose content, crystallinity, and lateral packing in Gossypium hirsutum and Gossypium barbadense cotton fibers using Sum Frequency Generation, Infrared and Raman Spectroscopy, and X-ray diffraction. Cellulose 22:971–989

    Article  CAS  Google Scholar 

  • Lee J, Burns TH, Light G, Sun Y, Fokar M, Kasukabe Y, Fulisawa K, Maekawa Y, Allen RD (2010) Xyloglucan endotransglycosylase/hydrolase genes in cotton and their role in fiber elongation. Planta 232:1191–1205

    Article  CAS  PubMed  Google Scholar 

  • Lee TM, Lur HS, Shieh YJ, Chu C (1994) Levels of abscisic acid in anoxia- or ethylene-treated rice (Oryza sativa L.) seedlings. Plant Sci 95:125–131

    Article  CAS  Google Scholar 

  • Lei L, Li S, Bashline L, Gu Y (2014) Dissecting the molecular mechanism underlying the intimate relationship between cellulose microfibrils and cortical microtubules. Front Plant Sci 5:1–8

    Article  CAS  Google Scholar 

  • Li F, Fan G, Wang K et al (2014) Genome sequence of the cultivated cotton G. arboreum. Nat Genet 46:567–572

    Article  CAS  PubMed  Google Scholar 

  • Li B, Yang Y, Hu W, Li X, Cao J, Fan L (2015) Over-expression of GhUGP1 in Upland cotton improves fibre quality and reduces fibre sugar content. Plant Breed 134:197–202

    Article  CAS  Google Scholar 

  • Li H, Qin Y, Pang Y, Song W-Q, Mei W-Q, Zhu Y-X (2007) A cotton ascorbate peroxidase is involved in hydrogen peroxide homeostasis during fibre cell development. New Phytol 175:462–471

    Article  CAS  PubMed  Google Scholar 

  • Li XB, Fan XP, Wang XL, Cai L, Yang WC (2005) The cotton ACTIN1 gene is functionally expressed in fibers and participates in fiber elongation. Plant Cell 17:859–875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liao W, Zhang J, Xu N, Peng M (2010) The role of phytohormones in cotton fiber development. Russ J Plant Physiol 57:462–468

    Article  CAS  Google Scholar 

  • Liszkay A, van der Zalm E, Schopfer P (2004) Production of reactive oxygen intermediates (O ·−2 , H2O2, and ·OH) by maize roots and their role in wall loosening and elongation. Plant Physiol 136:3114–3124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Q, Talbot M, Llewellyn D (2013) Pectin methylesterase and pectin remodelling differ in the fibre walls of two Gossypium species with very different fibre properties. PLoS ONE 8:e65131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo M, Xiao Y, Li X, Lu X, Deng W, Li D, Hou L, Hu M, Li Y, Pei Y (2007) GhDET2, a steroid 5α-reductase, plays an important role in cotton fiber cell initiation and elongation. Plant J 51:419–430

    Article  CAS  PubMed  Google Scholar 

  • Marks MD, Betancur L, Gilding E, Chen F, Bauer S, Wenger J, Dixon RA, Haigler CH (2008) A new method for isolating large quantities of Arabidopsis trichomes for transcriptome, cell wall and other types of analyses. Plant J 56:483–492

    Article  CAS  PubMed  Google Scholar 

  • Merchante C, Alonso JA, Stepanova AN (2013) Ethylene signaling: simple ligand, complex regulation. Curr Opin Plant Biol 16:554–560

    Article  CAS  PubMed  Google Scholar 

  • May OL (2002) Quality improvement of Upland cotton (Gossypium hirsutum L.). J Crop Prod 5:371–394

    Article  CAS  Google Scholar 

  • Mei W, Qin Y, Song W, Li J, Zhu Y (2009) Cotton GhPOX1 encoding plant class III peroxidase may be responsible for the high level of reactive oxygen species production that is related to cotton fiber elongation. J Genet Genomics 36:141–150

    Article  CAS  PubMed  Google Scholar 

  • Meinert MC, Delmer DP (1977) Changes in biochemical composition of the cell wall of the cotton fiber during development. Plant Physiol 59:1088–1097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyer VG (1974) Interspecific cotton breeding. Econom Bot 28:56–60

    Article  Google Scholar 

  • Michailidis G, Argiriou A, Darzentas N, Tsaftaris A (2009) Analysis of xyloglucan endotransglycosylase/hydrolase (XTH) genes from allotetraploid (Gossypium hirsutum) cotton and its diploid progenitors expressed during fiber elongation. J Plant Physiol 166:403–416

    Article  CAS  PubMed  Google Scholar 

  • Mohnen D (2008) Pectin structure and biosynthesis. Curr Opin Plant Biol 11:266–277

    Article  CAS  PubMed  Google Scholar 

  • Monshausen GB, Bibikova TN, Messerli MA, Shi C, Gilroy S (2007) Oscillations in extracellular pH and reactive oxygen species modulate tip growth of Arabidopsis root hairs. Proc Natl Acad Sci USA 104:20996–21001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moulherat C, Tengberg M, Haquet JF, Mille B (2002) First evidence of cotton at Neolithic Mehrgarh, Pakistan: analysis of mineralized fibres from a copper bead. J Archaeol Sci 29:1393–1401

    Article  Google Scholar 

  • Naylor GR, Stanton JH, Speijers J (2014) Skin comfort of base layer wool garments. Part 2: fiber diameter effects on fabric and garment prickle. Textile Res J84:1506–1514

    Article  CAS  Google Scholar 

  • Nayyar H, Kaur K, Basra AS, Malik CP (1989) Hormonal regulation of cotton fibre elongation in Gossypium arboreum L. In vitro and in vivo. Biochem Physiol Pflazen 185:415–421

    Article  CAS  Google Scholar 

  • O’Neill MA, York WS (2003) The composition and structure of primary cell walls. In: Rose JKC (ed) The plant cell wall. Annual Plant Review, CRC Press, Boca Raton, pp 1–54

    Google Scholar 

  • Pang CY, Wang H, Pang Y, Xu C, Jiao Y, Qin Y-M, Western TL, Yu S-X, Zhu Y-X (2010) Comparative proteomics indicates that biosynthesis of pectic precursors is important for cotton fiber and Arabidopsis root hair elongation. Mol Cell Proteomics 9:2019–2033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park S, Cosgrove D (2012) A revised architecture of primary cell walls based on biochemical changes induced by substrate-specific endoglucanases. Plant Physiol 158:1933–1943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paterson AH, Wendel JF, Gundlach H et al (2012) Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres. Nature 492:423–427

    Article  CAS  PubMed  Google Scholar 

  • Potikha T, Collins C, Johnson D, Delmer DP, Levine A (1999) The involvement of hydrogen peroxide in the differentiation of secondary walls in cotton fibers. Plant Physiol 119:849–858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Potocký M, Jones M, Bezvoda R, Smirnoff N, Žárský V (2007) Reactive oxygen species produced by NADPH oxidase are involved in pollen tube growth. New Phytol 174:742–751

    Article  PubMed  CAS  Google Scholar 

  • Pu L, Li Q, Fan X, Yang W, Xue Y (2008) The R2R3 MYB transcription factor GhMYB109 is required for cotton fiber development. Genetics 180:811–820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin YM, Hu CY, Pang Y, Kastanoitis AJ, Hiltunen JK, Zhu Y-X (2007) Saturated very-long-chain fatty acids promote cotton fiber and Arabidopsis cell elongation by activating ethylene biosynthesis. Plant Cell 19:3692–3704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin YM, Hu C, Zhu Y (2008) The ascorbate peroxidase regulated by H2O2 and ethylene is involved in cotton fiber cell elongation by modulating ROS homeostasis. Plant Signal Behav 3:194–196

    Article  PubMed  PubMed Central  Google Scholar 

  • Rapp R, Haigler C, Flagel L, Hovav RH, Udall JA, Wendel JF (2010) Gene expression in developing fibres of Upland cotton (Gossypium hirsutum L.) was massively altered by domestication. BMC Biol 8:139

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Roberts EM, Nunna RR, Huang JY, Trolinder NL, Haigler CH (1992) Effects of cycling temperatures on fiber metabolism in cultured cotton ovules. Plant Physiol 100:979–986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruan Y-L, Llewellyn DJ, Furbank RT (2001) The control of single-celled cotton fiber elongation by developmentally reversible gating of plasmodesmata and coordinated expression of sucrose and K+ transporters and expansin. Plant Cell 13:47–60

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ruan Y-L, Llewellyn DJ, Furbank RT (2003) Suppression of sucrose synthase gene expression represses cotton fiber cell initiation, elongation, and seed development. Plant Cell 15:952–964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruan Y-L, Xu S-M, White R, Furbank RT (2004) Genotypic and developmental evidence for the role of plasmodesmatal regulation in cotton fiber elongation mediated by callose turnover. Plant Physiol 136:4104–4113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruan Y (2007) Rapid cell expansion and cellulose synthesis regulated by plasmodesmata and sugar: insights from the single-celled cotton fibre. Funct Plant Biol 34:1–10

    Article  CAS  Google Scholar 

  • Salnikov V, Grimson MJ, Seagull RW, Haigler CH (2003) Localization of sucrose synthase and callose in freeze substituted, secondary wall stage, cotton fibers. Protoplasma 221:175–184

    CAS  PubMed  Google Scholar 

  • Sampathkumar A, Gutierrez R, McFarlane HE, Bringmann M, Lindeboom J, Emons A-M, Samuels L, Ketelaar T, Ehrhardt DW, Persson S (2013) Patterning and lifetime of plasma membrane-localized cellulose synthase is dependent on actin organization in Arabidopsis interphase cells. Plant Physiol 162:675–688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sauter M (2015) Phytosulfokine peptide signaling. J Expt Bot. Advanced access. doi:10.1093/jxb/erv071

    Google Scholar 

  • Seagull RW (1990) The effects of microtubule and microfilament disrupting agents on cytoskeletal arrays and wall deposition in developing cotton fibers. Protoplasma 159:44–59

    Article  CAS  Google Scholar 

  • Seagull RW (1993) Cytoskeletal involvement in cotton fiber growth and development. Micron 24:643–660

    Article  Google Scholar 

  • Seagull RW (1995) Cotton fiber growth and development: evidence for tip synthesis and intercalary growth in young fibers. Plant Physiol (Life Sci Adv) 14:27–38

    Google Scholar 

  • Seagull RW (1998) Cytoskeletal stability affects cotton fiber initiation. Int J Plant Sci 159:590–598

    Article  CAS  Google Scholar 

  • Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot. Article ID 217037

    Google Scholar 

  • Shi Y, Zhu S, Mao X, Feng J-X, Qin Y-M, Zhang L, Cheng J, Wei L-P, Wang Z-Y, Zhu Y-X (2006) Transcriptome profiling, molecular biological, and physiological studies reveal a major role for ethylene in cotton fiber cell elongation. Plant Cell 18:651–664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shui S, Plastina A (2013) FAO/ICAC World Apparel Fiber Consumption Survey. International Cotton Advisory Committee, Washington DC, https://www.icac.org/cotton_info/publications/statistics/world-apparel-survey/FAO-ICAC-Survey-2013-Update-and-2011-Text.pdf. ISBN 9780979390395

  • Singh B, Avci U, Eichler Inwood SE, Grimson MJ, Landgraf J, Mohnen D, Sørensen I, Wilkerson CG, Willats WGT, Haigler CH (2009a) A specialized outer layer of the primary cell wall joins elongating cotton fibers into tissue-like bundles. Plant Physiol 150:684–699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh B, Cheek HD, Haigler CH (2009b) A synthetic auxin (NAA) suppresses secondary wall cellulose synthesis and enhances elongation in cultured cotton fiber. Plant Cell Rep 28:1023–1032

    Article  CAS  PubMed  Google Scholar 

  • Stewart J McD (1975) Fiber initiation on the cotton ovule (Gossypium hirsutum). Am J Bot 62:723–730

    Article  Google Scholar 

  • Stiff MR, Haigler CH (2012) Recent advances in cotton fiber development. In: Oosterhuis D, Cothren T (eds) Cotton flowering and fruiting. Cotton Physiology Book Series, National Cotton Council, Memphis, pp 163–192

    Google Scholar 

  • Sun Y, Veerabomma S, Abdel-Mageed H, Fokar M, Asami T, Yoshida S, Allen RA (2005) Brassinosteroid regulates fiber development on cultured cotton ovules. Plant Cell Physiol 46:1384–1391

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Veerabomma S, Fokar M, Abidi N, Hequet E, Payton P, Allen RD (2015) Brassinosteroid signaling affects secondary cell wall deposition in cotton fibers. Ind Crops Prod 65:334–342

    Article  CAS  Google Scholar 

  • Taliercio E, Haigler CH (2011) The effect of calcium on early fiber elongation in cotton ovule culture. J Cotton Sci 15:154–161

    CAS  Google Scholar 

  • Tan J, Tu L, Deng F, Hu H, Nie Y, Zhang X (2013) A genetic and metabolic analysis revealed that cotton fiber cell development was retarded by flavonoid naringenin. Plant Physiol 162:86–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trolinder N (2009) Genetic engineering of cotton. In: Paterson AH (ed) Genetics and genomics of cotton. Plant genetics/genomics. Springer, New York, pp 187–207

    Chapter  Google Scholar 

  • Tuttle JR, Nah G, Duke MV, Alexander DC, Guan X, Song Q, Chen ZJ, Scheffler BE, Haigler CH (2015) Metabolomic and transcriptomic insights into how cotton fiber transitions to secondary wall synthesis, represses lignification, and prolongs elongation. BMC Genom 16:477

    Article  CAS  Google Scholar 

  • Vaughn KC, Turley RB (1999) The primary walls of cotton fibers contain an ensheathing pectin layer. Protoplasma 209:226–237

    Article  Google Scholar 

  • Wakelyn PJ, Bertoniere NR, French AD, Thibodeaux DP, Triplett BA, Rousselle MA, Goynes Jr WR, Edwards JV, Hunter L, McAlister DD et al (2007) Cotton fiber chemistry and technology. International Fiber Science Technical Series, vol 162. CRC Press, Boca Raton

    Google Scholar 

  • Wang HY, Yu Y, Chen ZL, Xia GX (2005) Functional characterization of Gossypium hirsutum profilin 1 gene (GhPFN1) in tobacco suspension cells. Planta 222:594–603

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Guo Y, Lv F, Zhu H, Wu S, Jiang Y, Li F, Zhou B, Guo W, Zhang T (2010a) The essential role of GhPEL gene, encoding a pectate lyase, in cell wall loosening by depolymerization of the de-esterified pectin during fiber elongation in cotton. Plant Mol Biol 72:397–406

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Wang H, Zhao P, Han L-B, Jiao G-L, Zheng Y-Y, Huang S-J, Xia G-X (2010b) Overexpression of a profilin (GhPFN2) promotes the progression of developmental phases in cotton fibers. Plant Cell Physiol 51:1276–1290

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Li X, Lian H, Ni D-A, He Y, Chen X-Y, Ruan Y-L (2010c) Evidence that high activity of vacuolar invertase is required for cotton fiber and arabidopsis root elongation through osmotic dependent and independent pathways, respectively. Plant Physiol 154:744–756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang ZY, Seto H, Fujioka S, Yoshida S, Chory J (2001) BRI1 is a critical component of a plasma-membrane receptor for plant steroids. Nature 410:380–383

    Article  CAS  PubMed  Google Scholar 

  • Wendel JF, Brubaker C, Alvarez I, Cronn R, Stewart J McD (2009) In: Paterson AH (ed) Genetics and genomics of cotton. Plant genetics/genomics. Springer, New York, pp 3–22

    Chapter  Google Scholar 

  • Wolf S, Greiner S (2012) Growth control by cell wall pectins. Protoplasma 249(2):169–175

    Article  CAS  Google Scholar 

  • Xiao Y, Li D, Yin M, Li X, Zhang M, Wang Y, Dong J, Zhao J, Luo M, Luo X (2010) Gibberellin 20-oxidase promotes initiation and elongation of cotton fibers by regulating gibberellin synthesis. J Plant Physiol 167:829–837

    Article  CAS  PubMed  Google Scholar 

  • Xu S, Brill E, Llewellyn DJ, Furbank RT, Ruan Y (2012) Overexpression of a potato sucrose synthase gene in cotton accelerates leaf expansion, reduces seed abortion, and enhances fiber production. Mol Plant 5(2):430–441

    Article  CAS  PubMed  Google Scholar 

  • Xu W, Zhang D, Wu Y, Qin L, Huang G, Li J, Li L, Li X (2013) Cotton PRP5 gene encoding a proline-rich protein is involved in fiber development. Plant Mol Biol 82:353–365

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Bian S, Yao Y, Liu J (2008) Comparative proteomic analysis provides new insights into the fiber elongating process in cotton. J Proteome Res 7:4623–4637

    Article  CAS  PubMed  Google Scholar 

  • Yoo M, Wendel JF (2014) Comparative evolutionary and developmental dynamics of the cotton (Gossypium hirsutum) fiber transcriptome. PLoS Genet 10:e1004073

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang M, Zheng X, Song S, Zeng Q, Hou L, Li D, Zhao J, Wei Y, Li X, Luo M et al (2011) Spatiotemporal manipulation of auxin biosynthesis in cotton ovule epidermal cells enhances fiber yield and quality. Nat Biotechnol 29:453–459

    Article  CAS  PubMed  Google Scholar 

  • Zhang B (2013) From biotransformation to agricultural application. In: Zhang B (ed) Transgenic cotton: methods and protocols, methods in molecular biology, vol 958. Springer, New York, pp 3–15

    Chapter  Google Scholar 

  • Zhang T, Hu Y, Jiang W et al (2015) Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement. Nat Biotechnol 33:531–537

    Article  CAS  PubMed  Google Scholar 

  • Zhong R, Lee C, Ye Z-H (2010) Evolutionary conservation of the transcriptional network regulating secondary wall biosynthesis. Trends Plant Sci 15:625–632

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

For support of research in this area, the authors thank the National Science Foundation (Grant # 1025947) and Cotton Incorporated, Cary, NC, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Candace H. Haigler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Stiff, M.R., Tuttle, J.R., Graham, B.P., Haigler, C.H. (2016). Cotton Fiber Biotechnology : Potential Controls and Transgenic Improvement of Elongation and Cell Wall Thickening. In: Ramawat, K., Ahuja, M. (eds) Fiber Plants. Sustainable Development and Biodiversity, vol 13. Springer, Cham. https://doi.org/10.1007/978-3-319-44570-0_8

Download citation

Publish with us

Policies and ethics