The Global Importance of Transgenic Cotton

Part of the Sustainable Development and Biodiversity book series (SDEB, volume 13)


The origins of transgenic cotton are reviewed including the original objectives, early efforts to establish the technical capabilities, selection of initial traits for development, market place benefits, and global acceptance of the technology. Further consideration is given to cotton’s place in the effort to meet the projected demands for food and fiber over the next 50-year horizon, traits and technologies under development, and the need for close public and private research collaboration in order to address the issues facing the world’s farmers as they work to meet those demands. Impact of transgenic cotton on global economy, environment, genetic diversity, and safety is also highlighted.


Cotton Transgenic cotton Cotton traits Global economy Genetic diversity 


  1. All, 23 April 2015. Jonathan Signs Biosafety Bill Into Law, NigeriaGoogle Scholar
  2. An G, Watson BD, Stachel S, Gordon MP, Nester EW (1985) New cloning vehicles for transformation of higher plants. EMBO J 4(2):277–284PubMedPubMedCentralGoogle Scholar
  3. Andersen HC (1909) The emperor’s new clothes tales. In: Eliot CW (ed) The harvard classics. P.F. Collier & Son, New YorkGoogle Scholar
  4. Anderson D (1985) Plant vector. US patent #432,842Google Scholar
  5. Brookes G, Barfoot P (2014) Economic impact of GM crops: the global income and production effects 1996–2012. GM Crops Food 5:65–75CrossRefPubMedPubMedCentralGoogle Scholar
  6. Brown H, Bonner J, Weir J (1957) The next hundred years. The Viking Press, New YorkGoogle Scholar
  7. Bureau TE, Wessler SR (1994) Stowaway: a new family of inverted repeat elements associated with the genes of both monocotyledonous and dicotyledonous plants. Plant Cell 6:907–916CrossRefPubMedPubMedCentralGoogle Scholar
  8. Cai CQ, Doyon Y, Ainley WM, Miller JC, Dekelver RC, Moehle EA, Rock JM, Lee YL, Garrison R, Schulenberg L, Blue R, Worden A, Baker L, Faraji F, Zhang L, Holmes MC, Rebar EJ, Collingwood TN, Rubin-Wilson B, Gregory PD, Urnov FD, Petolino JF (2008) Targeted transgene integration in plant cells using designed zinc finger nucleases. Plant Mol Biol 69(6):699–709CrossRefPubMedGoogle Scholar
  9. Chilton M-D, Drummond MH, Merlo DJ, Sciaky D, Montoya AL, Gordon MP, Nester EW (1977) Stable incorporation of plasmid DNA into higher plant cells: the molecular basis of crown gall tumorigenesis. Cell 11:263–271CrossRefPubMedGoogle Scholar
  10. Chlan CA, Rajasekaran K, Cleveland TE (1999) Transgenic cotton (Gossypium hirsutum L.). In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 46. Transgenic Crops ISpringer, Berlin, pp 283–301Google Scholar
  11. Choudhary B, Gaur K (2010) Bt cotton in India: a country profile. ISAAA Series of Biotech Crop Profiles. ISAAA, IthacaGoogle Scholar
  12. Davidonis GH, Hamilton RH (1983) Plant regeneration from callus tissue of Gossypium hirsutum L. Plant Sci Lett 32:89–93CrossRefGoogle Scholar
  13. De Block M, Herrera-Estrella L, Van Montagu M, Schell J, Zambryski P (1984) Expression of foreign genes in regenerated plants and in their progeny. EMBO J 3(8):1681–1689PubMedPubMedCentralGoogle Scholar
  14. de Magalhães Bertini CHC, Schuster I, Sediyam T, Gonçalves de Barros E, Moreira MA (2006) Characterization and genetic diversity analysis of cotton cultivars using microsatellites Cândida. Gen Mol Biol 29(2):321–329CrossRefGoogle Scholar
  15. Diamond v Chakrabarty (1980) 447 US 303. US Supreme Court DecisionGoogle Scholar
  16. Ecclesiastes 1:9. Holy Bible, New International Version®, NIV® Copyright ©1973, 1978, 1984, 2011 by Biblica, Inc.®Google Scholar
  17. Fernandez-Cornejo J, Wechsler S, Livingston M, Mitchell L (2014) Genetically engineered crops in the United States. USDA-economic research report no. 162Google Scholar
  18. Firoozabady E, DeBoer DL, Merlo DJ, Halk EL, Amerson LN, Rashka KE, Murray EE (1987) Transformation of cotton (Gossypium hirsutum L.) by Agrobacterium tumefaciens and regeneration of transgenic plants. Plant Mol Biol 10:105–116CrossRefPubMedGoogle Scholar
  19. Fraley R, Rogers S, Horsch R (1983) Use of a chimeric gene to confer antibiotic resistance to plant cells. In advances in gene technology: molecular genetics of plants and animals. Plenum Press, New YorkGoogle Scholar
  20. Gladyshev EA, Meselson M, Arkhipova IR (2008) Massive horizontal gene transfer in bdelloid rotifers. Science 320:1753–1756CrossRefGoogle Scholar
  21. Grula JW, Hudspeth RL, Hobbs SL, Anderson DM (1995) Organization, inheritance and expression of acetohydroxyacid synthase genes in the cotton allotetraploid Gossypium hirsutum. Plant Mol Biol 28:837–846CrossRefPubMedGoogle Scholar
  22. Hanola V, Pauly S (2011) New York times. June 11, p A5Google Scholar
  23. Hoekema A, Hirsch PR, Hooykaas PJJ, Schilperoort RA (1983) A binary plant vector strategy based on separation of vir-and T-region of the Agrobacterium tumefaciens Ti-plasmid. Nature 303:179–180CrossRefGoogle Scholar
  24. Hoisington D, Khairallah M, Reeves T, Ribaut J-M, Skovmand B, Taba S, Warburton M (1999) Plant genetic resources: what can they contribute toward increased crop productivity? Proc Natl Acad Sci USA 96:5937–5943CrossRefPubMedPubMedCentralGoogle Scholar
  25. Hooykaas van Slogteren GMS, Hooykaas PJJ, Schilperoort RA (1984) Expression of Ti-plasmid genes in monocotyledonous plants infected with Agrobacterium tumefaciens. Nature 311:763–764CrossRefGoogle Scholar
  26. Horsch R, Fry J, Hoffmann N, Eichholtz D, Rogers S, Fraley R (1985) A simple and general method for transferring genes into plants. Science 227(4691):1229–1231CrossRefGoogle Scholar
  27. James C (2014) Global status of commercialized biotech/GM crops. ISAAA briefs no. 49. ISAAA, Ithaca, NYGoogle Scholar
  28. Kamalick J (1997) US EPA herbicide ban cuts Calgene market. 29 Dec 1997 ICIS News 19:39Google Scholar
  29. Kendall HW, Pimental D (1994) Constraints on the expansion of the global food supply. Ambio 23:198–205Google Scholar
  30. Klümper W, Qaim M (2014) A meta-analysis of the impacts of genetically modified crops. PLoS ONE 9:e111629CrossRefPubMedPubMedCentralGoogle Scholar
  31. Kyndt T, Quispe D, Zhai H, Jarret R, Ghislain M, Liu Q, Gheysen G, Kreuze JF (2015) The genome of cultivated sweet potato contains Agrobacterium T-DNAs with expressed genes: An example of a naturally transgenic food crop. Proc Natl Acad Sci USA 112(18):5844–5849CrossRefPubMedPubMedCentralGoogle Scholar
  32. Li F-W, Villarreal JC, Kelly S, Rothfels CJ, Melkonian M, Frangedakis E, Ruhsam E, Sigel EM, Der JP, Pittermanni J, Burge DO, Pokorny L, Larsson A, Chen T, Weststrand S, Thomas P, Carpenter E, Zhang Y, Tian Z, Chen L, Yan Z, Zhu Y, Sun X, Wang J, Stevenson DW, Crandall-Stotler BJ, Shaw AJ, Deyholos MK, Soltis DE, Graham SW, Windham MD, Langdale JA, Wong GK-S, Mathews S, Pryer KM (2014) Horizontal transfer of an adaptive chimeric photoreceptor from bryophytes to ferns. Proc Natl Acad Sci USA 111:6672–6677CrossRefPubMedPubMedCentralGoogle Scholar
  33. Little RJ, Jones CE (1980) A dictionary of botany. Van Norstrand Reinhold Company, Inc, HobokenGoogle Scholar
  34. Liu S, Cantrell RG, McCarty JC Jr, Stewart JMcD (2000) Simple sequence repeat based assessment of genetic diversity in cotton race stock accessions. Crop Sci 40:1459–1469CrossRefGoogle Scholar
  35. McClintock B (1953) Induction of instability at selected loci in maize. Genetics 38:579–599PubMedPubMedCentralGoogle Scholar
  36. Mishra R, Wang HY, Yadav NR, Wilkins TA (2003) Development of a highly regenerable elite Acala cotton (Gossypium hirsutum cv. Maxxa)—a step towards genotype independent regeneration. Plant Cell, Tissue Organ Cult 73:21–35CrossRefGoogle Scholar
  37. Moran NA, Jarvik T (2010) Lateral transfer of genes from fungi underlies carotenoid production in aphids. Science 328:624–627CrossRefPubMedGoogle Scholar
  38. Oxford Advanced Lerner's Dictionary (2015) Oxford University Press, New York, NY Google Scholar
  39. Perlak FJ, Deaton RW, Armstrong TA, Fuchs RL, Sims SR, Greenplate JT, Fischoff DA (1990) Insect resistant cotton plants. Nat Biotechnol 8:939–943CrossRefGoogle Scholar
  40. Popoff M (2011) Blame organic food industry for E. coli outbreak. Real Clear Science June 29, 2011. Accessed July 2015
  41. Potrykus I (1991) Gene transfer to plants: assessment of published approaches and results. Ann Rev Plant Physiol Plant Mol Biol 42:205–225CrossRefGoogle Scholar
  42. Rajasekaran K (2004) Agrobacterium-mediated genetic transformation of cotton. In: Curtis IS (ed) Transgenic crops of the world—essential protocols. Springer, Berlin, pp 243–254CrossRefGoogle Scholar
  43. Rajasekaran K, Grula JW, Anderson DM (1996a) Selection and characterization of mutant cotton (Gossypium hirsutum L.) cell lines resistant to sulfonylurea and imidazolinone herbicides. Plant Sci 119:115–124CrossRefGoogle Scholar
  44. Rajasekaran K, Grula JW, Hudspeth RL, Pofelis S, Anderson DM (1996b) Herbicide-resistant Acala and Coker cottons transformed with a native gene encoding mutant forms of acetohydroxyacid synthase. Mol Breed 2:307–319CrossRefGoogle Scholar
  45. Rangan TS, Rajasekaran K (1997) Regeneration of cotton plant in suspension culture. US patent #5,695,999Google Scholar
  46. Rangan TS, Zavala T (1984) Somatic embryogenesis in tissue culture of Gossypium hirsutum L.). In Vitro 20:256Google Scholar
  47. Rangan TS, Anderson DM, Rajasekaran K, Grula JW, Hudspeth RL, Yenofsky RL (2004) Transformed cotton plants. US patent #6,753,463Google Scholar
  48. Rapp RA, Haigler CH, Flagel L, Hovav RH, Udall JA, Wendel JF (2010) Gene expression in developing fibres of upland cotton (Gossypium hirsutum L.) was massively altered by domestication. BMC Biol 15(8):139CrossRefGoogle Scholar
  49. Rathore K, Sunilkumar G, Cantrell R, Hague S, Reding H (2008) Cotton. In: Kole C, Hall TC (eds) Compendium of transgenic crop plants. Transgenic sugar, tuber and fiber crops, vol 7. Wiley-Blackwell, Chichester, pp 199–238CrossRefGoogle Scholar
  50. Stalker DM, McBride KE, Malyj LD (1988) Herbicide resistance in transgenic plants expressing a bacterial detoxification gene. Science 242:419–423Google Scholar
  51. Shukla VK, Doyon Y, Miller JC, KeKelver RC, Moehle EA, Worden SE, Mithcell JC, Arnold NL, Gopalan S, Meng X, Choi VM, Rock JM, Wu Y, Katibah GE, Zhifang G, McCaskill D, Simpson MA, Blakeslee B, Greenwalt SA, Butler HJ, Hinkley SJ, Zhang L, Rebar EJ, Gregory PD, Urnov FD (2009) Precise genome modification in the crop species Zea mays using zinc-finger nucleases. Nature 459:437–441CrossRefPubMedGoogle Scholar
  52. Sunilkumar G, Campbell LM, Puckhaber L, Stipanovic RD, Rathore KS (2006) Engineering cottonseed for use in human nutrition by tissue-specific reduction of toxic gossypol. Proc Natl Acad Sci USA 103:18054–18059CrossRefPubMedPubMedCentralGoogle Scholar
  53. Thompson GD, Pellow JW, Braxton LB, Haygood RA, Richburg JS, Lassiter RB, Haile FJ, Huckaba RM, Willrich MM, Langston VB, Richardson JM, Mueller JP (2005) WideStrike: a new stacked insect resistant trait for cotton. In: Proceedings of the 2005 Beltwide cotton conference, National Cotton Council, New Orleans, LAGoogle Scholar
  54. Trolinder NL, Goodin JR (1987) Somatic embryogenesis and plant regeneration in cotton (Gossypium hirsutum L.). Plant Cell Rep 6:231–234CrossRefPubMedGoogle Scholar
  55. Sakhanokho HF, Zipf A, Rajasekaran K, Saha S, Sharma GC (2001) Induction of highly embryogenic calli and plant regeneration in upland (Gossypium hirsutum L.) and Pima (Gossypium barbadense L.) cottons. Crop Sci 41:1235–1240CrossRefGoogle Scholar
  56. Sakhanokho HF, Rajasekaran K (2016) Cotton regeneration in vitro (Chapter 6). In: Ramawat KG, Ahuja MR (eds) Fiber plants. Sustainable development and biodiversity, vol 13. Springer, pp xxx-xxx Google Scholar
  57. Shoemaker RC, Couche LJ, Galbraith DW (1986) Characterization of somatic embryogenesis and plant regeneration in cotton (Gossypium hirsutum L.). Plant Cell Rep 5:178–181CrossRefPubMedGoogle Scholar
  58. Umbeck P, Johnson G, Barton K, Swain W (1987) Genetically transformed cotton (Gossypium hirsutum L.) plants. Nat Biotechnol 5:263–266CrossRefGoogle Scholar
  59. Waldron C, Murphy E, Roberts J, Gustafson G, Armour S, Malcolm S (1985) Resistance to hygromycin B: a new marker for plant transformation studies. Plant Mol Biol 5:103CrossRefPubMedGoogle Scholar
  60. Wilkins TA, Rajasekaran K, Anderson DM (2000) Cotton biotechnology. Crit Rev Plant Sci 19:511–550CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Dow AgroSciences LLC, Phytogen Seed CompanyCorcoranUSA
  2. 2.USDA-ARS Southern Regional Research CenterNew OrleansUSA

Personalised recommendations