Skip to main content

Estrogen and Menopause: Muscle Damage, Repair and Function in Females

Abstract

Menopause is accompanied by a sharp decline in estrogen levels. Estrogen has many positive effects on skeletal muscle including, protection against exercise induced damage, attenuation of post-damage inflammation, enhancement of post-damage muscle repair, enhancement of post-atrophy recovery of muscle mass, improved maintenance and enhancement of postmenopausal muscle mass and strength and improved muscle hypertrophic response to exercise. These along with enhancement of other well-known metabolic and bone mass maintenance effects of estrogen can have profound influence on the health and functional abilities of postmenopausal females. Experimental evidence for these effects derived from animal and human models is discussed. In addition, the physiological and cellular signaling mechanisms of how estrogen may influence muscle damage, inflammation, repair and mass as gleaned from both animal and human based experiments are also noted. Finally evidence for the safety of estrogen replacement in postmenopausal women is discussed based on newer epidemiological and health data as well as experimental animal models and the case is made for the benefits of hormone replacement in menopause for maintenance of optimal muscle functioning in older women.

Keywords

  • Estrogen
  • Muscle mass
  • Inflammation
  • Muscle damage
  • Muscle strength
  • Menopause

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-44558-8_5
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   89.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-44558-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   119.99
Price excludes VAT (USA)
Hardcover Book
USD   169.99
Price excludes VAT (USA)
Fig. 5.1
Fig. 5.2

References

  • Amelink GJ, Kamp HH, Bar PR. Creatine kinase isoenzyme profiles after exercise in the rat: sex-linked differences in leakage of CK-MM. Pflugers Arch. 1988;412:417–21.

    CAS  CrossRef  PubMed  Google Scholar 

  • Amelink GJ, Koot RW, Erich WB, Van Gijn J, Bar PR. Sex-linked variation in creatine kinase release, and its dependence on oestradiol, can be demonstrated in an in vitro rat skeletal muscle preparation. Acta Physiol Scand. 1990;138:115–24.

    CAS  CrossRef  PubMed  Google Scholar 

  • Bombardier E, Vigna C, Iqbal S, Tiidus PM, Tupling AR. Effects of ovarian sex hormones and downhill running on fiber type-specific Hsp70 expression in rat soleus. J Appl Physiol. 2009;106:2009–15.

    CAS  CrossRef  PubMed  Google Scholar 

  • Bombardier E, Vigna C, Bloemberg D, Quadrilatero J, Tiidus PM, Tupling AR. The role of estrogen receptor-α in estrogen-mediated regulation of basal and exercise-induced Hsp70 and Hsp27 expression in rat soleus. Can J Physiol Pharmacol. 2013;91:823–9.

    CAS  CrossRef  PubMed  Google Scholar 

  • Brown M, Foley AM, Ferreira JA. Ovariectomy, hindlimb unweighting and recovery effects on skeletal muscle in adult rats. Aviat Space Environ Med. 2005;76:1012–8.

    PubMed  Google Scholar 

  • Dieli-Conwright CM, Specktor TM, Rice JC, Sattler FR, Schroder ET. Influence of hormone replacement therapy on eccentric exercise induced myogenic gene expression in postmenopausal women. J Appl Physiol. 2009a;107:1381–8.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Dieli-Conwright CM, Specktor TM, Rice JC, Schroder ET. Hormone therapy attenuates exercise-induced muscle damage in postmenopausal women. J Appl Physiol. 2009b;107:853–8.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Enns DL, Tiidus PM. Estrogen influences satellite cell activation and proliferation following downhill running in rats. J Appl Physiol. 2008;104:347–53.

    CrossRef  PubMed  Google Scholar 

  • Enns DL, Tiidus PM. The influence of estrogen on skeletal muscle: sex matters. Sports Med. 2010;40:41–58.

    CrossRef  PubMed  Google Scholar 

  • Enns DL, Iqbal S, Tiidus PM. Oestrogen receptors mediate oestrogen-induced increases in post-exercise rat skeletal muscle satellite cells. Acta Physiol. 2008;194:81–93.

    CAS  CrossRef  Google Scholar 

  • Greising SM, Baltgalvis KA, Lowe DA, Warren GL. Hormone therapy and skeletal muscle strength: a meta-analysis. J Gerontol A Biol Sci Med Sci. 2009;64:1071–81.

    CrossRef  CAS  PubMed  Google Scholar 

  • Greising SM, Baltgalvis KA, Kosir AM, Moran AL, Warren GL, Lowe DA. Estradiol’s beneficial effect on murine muscle function is independent of muscle activity. J Appl Physiol. 2011;110:109–15.

    CAS  CrossRef  PubMed  Google Scholar 

  • Gurney EP, Nachtagall MJ, Nachtagall LE, Naftolin F. The women’s health initiative trial and related studies: 10 years later: a clinician’s view. J Steroid Biochem Mol Biol. 2014;142:4–11.

    CAS  CrossRef  PubMed  Google Scholar 

  • Hawke TJ, Gerry DJ. Myogenic satellite cells: physiology to molecular biology. J Appl Physiol. 2001;91:534–51.

    CAS  PubMed  Google Scholar 

  • Hondis HN, Collins P, Mack WJ, Schierbeck LL. The timing hypothesis for coronary heart disease prevention and hormone therapy: past, present and future in perspective. Climeractic. 2012;15:217–28.

    CrossRef  CAS  Google Scholar 

  • Iqbal S, Thomas A, Bunyan K, Tiidus PM. Progesterone and estrogen influence post-exercise skeletal muscle leukocyte infiltration in overiectomized female rats. Appl Physiol Nutr Metabol. 2008;33:1207–12.

    CAS  CrossRef  Google Scholar 

  • Komulainen J, Koskinen S, Kalliokoski R, Takala T, Vihko V. Gender differences in skeletal muscle damage after eccentrically biased downhill running in rats. Acta Physiol Scand. 1999;165:57–63.

    CAS  CrossRef  PubMed  Google Scholar 

  • LaCroix AZ, Chiebowski RT, Manson JE, Aragaki AK, Johnson KC, Martin L, Margolis KL, Stefanick ML, Brzyski R, Curb JD, Howard BV, Lewis CE, Wactawski-Wende J. Health outcomes after stopping conjugated equine estrogens among postmenopausal women with prior historectomy. JAMA. 2011;305:1305–14.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Lai S, Collins BC, Colson BA, Kararigas G, Lowe DA. Estradiol modulates myosin regulatory light chain phosphorylation and contractility in skeletal muscle of female mice. Am J Physiol Endocinol Metab. 2016;310(9):E724–33.

    CrossRef  Google Scholar 

  • Lemoine S, Granier P, Tiffoche C. Effect of endurance training on oestrogen receptor alpha expression in different rat skeletal muscle type. Acta Physiol Scand. 2003;174:283–9.

    CrossRef  Google Scholar 

  • Lowe DA, Baltgalvis KA, Greising SM. Mechanisms behind estrogen’s beneficial effect on muscle strength in females. Exerc Sport Sci Rev. 2010;38:61–7.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • MacNeil LG, Baker SK, Stevic I, Tarnopolsky MA. 17β-estradiol attenuates exercise-induced neutrophil infiltration in men. Am J Physiol Regul Integr Comp Physiol. 2011;300:R1443–51.

    CAS  CrossRef  PubMed  Google Scholar 

  • Mangan G, Bombardier E, Mitchell A, Quadrilatero J, Tiidus PM. Oestrogen-dependent satellite cell activation and proliferation following a running exercise occurs via the PI3K signalling pathway and not IGF-1. Acta Physiol. 2014;212:75–85.

    CAS  CrossRef  Google Scholar 

  • Mangan G, Iqbal S, Hubbard A, Hamilton V, Bombardier E, Tiidus PM. Delay in post-ovariectomy estrogen-replacement negates estrogen-induced augmentation of post-exercise satellite cell proliferation. Can J Physiol Pharmacol. 2015;93:945–51.

    CAS  CrossRef  PubMed  Google Scholar 

  • McClung JM, Davis JM, Wilson MA, Goldsmith EC, Carson JA. Estrogen status and skeletal muscle recovery from disuse atrophy. J Appl Physiol. 2006;100:2012–3.

    CAS  CrossRef  PubMed  Google Scholar 

  • McFarland DC, Pesall JE, Coy CS, Velleman SG. Effects of 17β-estradiol on turkey myogenic satellite cell proliferation, differentiation, and expression of glypican-1, MyoD and myogenin. Comp Biochem Physiol A Mol Integr Physiol. 2013;164:556–71.

    CrossRef  CAS  Google Scholar 

  • Miller MS, Bedrin NG, Callahan DM, Previs MJ, Jennings ME, Ades PA, Maughan DA, Palmer BM, Toth MJ. Age-related slowing of myosin actin cross-bridge kinetics is sex specific and predicts decrements in whole skeletal muscle performance in humans. J Appl Physiol. 2013;115:1004–14.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Moran AL, Nelson SA, Landisch RM, Warren GL, Lowe DA. Estradiol replacement reverses ovariectomy-induced muscle contractile and myosin dysfunction in mature female mice. J Appl Physiol. 2007;102:1387–93.

    CAS  CrossRef  PubMed  Google Scholar 

  • Noble EG, Milne KJ, Melling CWJ. Heat shock proteins and exercise: a primer. Appl Physiol Nutr Metab. 2008;33:1050–65.

    CAS  CrossRef  PubMed  Google Scholar 

  • Perry SK, Radke A, Bombardier E, Tiidus PM. Hormone replacement and strength training positively influence balance during gait in post-menopausal females: a pilot study. J Sports Sci Med. 2005;4:372–82.

    PubMed  PubMed Central  Google Scholar 

  • Persky AM, Green PS, Stubley L, Howell CO, Zaulyanov L, Baseau GA, Simpkins JW. Protective effect of estrogens against oxidative damage to heart and skeletal muscle in vivo and in vitro. Proc Soc Exp Biol Med. 2000;223:59–66.

    CAS  CrossRef  PubMed  Google Scholar 

  • Pollanen E, Kangas R, Horttanainen M, Niskala P, Kaprio J, Butler-Browne G, Mouly V, Sipila S, Kovanen V. Intramuscular sex steroid hormones are associated with skeletal muscle strength and power in women with different hormonal status. Aging Cell. 2015;14:236–48.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Qaisar R, Renaud G, Hedstrom Y, Pollanen E, Ronkainen P, Kaprio J, Alen M, Sipila S, Artemenko K, Bergquist J, Kovanen V. Hormone replacement therapy improves contractile function and myonuclear organization of single muscle fibres from postmenopausal monozygotic female twin pairs. J Physiol. 2013;591:2333–44.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Ronkainen PHA, Kovanen V, Alen M, Pollanen E, Palonen EM, Ankarberg-Lindgren C, Hamalainen E, Trupeinen U, Kujula UM, Puolakka J, Kaprio J, Sipila S. Postmenopausal hormone replacement therapy modifies skeletal muscle composition and function: a study with monozygotic twin pairs. J Appl Physiol. 2009;107:25–33.

    CAS  CrossRef  PubMed  Google Scholar 

  • Rozenberg S, Vandromme J, Antoine C. Postmenopausal hormone therapy: risks and benefits. Nat Rev Endocrinol. 2013;9:216–27.

    CAS  CrossRef  PubMed  Google Scholar 

  • Salpeter SR, Cheng J, Thabene L, Buckley EE, Salpeter NS. Bayesian meta-analysis of hormone therapy and mortality in younger postmenopausal women. Am J Med. 2009;122:1016–22.

    CAS  CrossRef  PubMed  Google Scholar 

  • Schierbeck LL, Rejnmark L, Torteng CL, Stigren L, Eiken P, Mosekilde L, Kober L, Jensen JEB. Effect of hormone replacement therapy on cardiovascular events in recently postmenopausal women: randomized trial. Br Med J. 2012;345, e6409.

    CrossRef  CAS  Google Scholar 

  • Sipila S, Taafe DR, Cheng S, Puolakka J, Toivanen J, Suominen H. Effects of hormone replacement therapy and high-impact physical exercise on skeletal muscle in post-menopausal women: a randomized placebo-controlled study. Clin Sci. 2001;101:147–57.

    CAS  CrossRef  PubMed  Google Scholar 

  • Sipila S, Finni T, Kovanen V. Estrogen influences on neuromuscular function in postmenopausal women. Calcif Tissue Int. 2015;96:222–33.

    CAS  CrossRef  PubMed  Google Scholar 

  • Sitnick M, Foley AM, Brown M, Spangenburg EE. Ovariectomy prevents the recovery of atrophied gastrocnemius skeletal muscle mass. J Appl Physiol. 2006;100:286–93.

    CAS  CrossRef  PubMed  Google Scholar 

  • Skelton DA, Phillips SK, Bruce AS, Naylot CH, Woledge RC. Hormone replacement therapy increases isometric muscle strength of adductor pollicis in post-menopausal women. Clin Sci. 1999;96:257–364.

    CrossRef  Google Scholar 

  • Sonobe T, Inagaki T, Sudo M, Poole DC, Kano Y. Sex differences in intracellular Ca2+ accumulation following eccentric contractions of rat skeletal muscle in vivo. Am J Physiol Regul Integr Comp Physiol. 2010;299:R1006–12.

    CAS  CrossRef  PubMed  Google Scholar 

  • Spangenburg EE, Geiger PC, Leinwand LA, Lowe DA. Regulation of physiological and metabolic function of muscle by female sex steroids. Med Sci Sports Exerc. 2012;44:1653–62.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Stupka N, Tiidus PM. Effects of ovariectomy and estrogen on ischemia-reperfusion injury in hindlimbs of female rats. J Appl Physiol. 2001;91:1828–35.

    CAS  PubMed  Google Scholar 

  • Suzuki S, Brown CM, Dela-Cruz CD, Yang E, Bridwell DA, Wise PM. Timing of estrogen therapy after ovariectomy dictates the efficacy of its neuroprotective and anti-inflammatory actions. Proc Natl Acad Sci U S A. 2007;104:6013–8.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Taafe DR, Siplia S, Cheng S, Puolakka J, Toivanen J, Suominen H. The effect of hormone replacement therapy and/or exercise n skeletal muscle attenuation in postmenopausal women: a yearlong intervention. Clin Physiol Funct Imaging. 2005;25:297–304.

    CrossRef  Google Scholar 

  • Thomas A, Bunyan K, Tiidus PM. Oestrogen receptor-alpha activation augments post-exercise muscle myoblast proliferation. Acta Physiol. 2010;198:81–9.

    CAS  CrossRef  Google Scholar 

  • Tidball JG. Inflammatory processes in muscle injury and repair. Am J Physiol Regul Integr Comp Physiol. 2005;288:R345–53.

    CAS  CrossRef  PubMed  Google Scholar 

  • Tiidus PM. Can estrogens diminish exercise induced muscle damage? Can J Appl Physiol. 1995;20:26–38.

    CAS  CrossRef  PubMed  Google Scholar 

  • Tiidus PM. Radical species in inflammation and overtraining. Can J Physiol Pharmacol. 1998;76:533–8.

    CAS  CrossRef  PubMed  Google Scholar 

  • Tiidus PM. Influence of estrogen and gender on muscle damage, inflammation and repair. Exerc Sport Sci Rev. 2003;31:40–4.

    CrossRef  PubMed  Google Scholar 

  • Tiidus PM, Bombardier E. Oestrogen attenuates myeloperoxidase activity in skeletal muscle of male rats. Acta Physiol Scand. 1999;166:85–90.

    CAS  CrossRef  PubMed  Google Scholar 

  • Tiidus PM, Holden D, Bombardier E, Zajchowski S, Enns D, Belcastro A. Estrogen effect on post-exercise skeletal muscle neutrophil infiltration and calpain activity. Can J Physiol Pharmacol. 2001;79:400–6.

    CAS  CrossRef  PubMed  Google Scholar 

  • Tiidus PM, Deller M, Liu XL. Estrogen influence on myogenic satellite cells following downhill running in male rats; a preliminary study. Acta Physiol Scand. 2005;184:67–72.

    CAS  CrossRef  PubMed  Google Scholar 

  • Tiidus PM, Lowe DA, Brown M. Estrogen replacement and skeletal muscle: mechanisms and population health. J Appl Physiol. 2013;115:569–78.

    CAS  CrossRef  PubMed  Google Scholar 

  • Vandenboom R, Gittings W, Smith IC, Grange RW, Stull JT. Myosin phosphorylation and force potentiation in skeletal muscle: evidence from animal models. J Muscle Res Cell Motil. 2013;34:317–32.

    CAS  CrossRef  PubMed  Google Scholar 

  • Velders M, Schleipen B, Fritzemeier KH, Zierau O, Diel P. Selective estrogen receptor-beta activation stimulates skeletal muscle growth and regeneration. FASEB J. 2012;26:1909–20.

    CAS  CrossRef  PubMed  Google Scholar 

  • Warren GL, Palubinskas LE. Human and animal experimental muscle injury models. In: Tiidus PM, editor. Muscle damage and repair. Champaign IL: Human Kinetics; 2008. p. 13–36.

    Google Scholar 

  • Wiik A, Gustafsson T, Esbjornsson M, Johansson O, Ekman M, Sundberg CJ, Jansson E. Expression of oestrogen receptor α and β is higher in skeletal muscle of highly endurance-trained than moderately active men. Acta Physiol Scand. 2005;184:105–12.

    CAS  CrossRef  PubMed  Google Scholar 

  • Yin H, Price F, Rudnicki MA. Satellite cells and the muscle stem cell niche. Physiol Rev. 2013;93:23–67.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter M. Tiidus B.Sc., M.Sc., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tiidus, P.M. (2017). Estrogen and Menopause: Muscle Damage, Repair and Function in Females. In: Hackney, A. (eds) Sex Hormones, Exercise and Women. Springer, Cham. https://doi.org/10.1007/978-3-319-44558-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44558-8_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44557-1

  • Online ISBN: 978-3-319-44558-8

  • eBook Packages: MedicineMedicine (R0)