Advertisement

Visualizing Big Data

  • Ekaterina Olshannikova
  • Aleksandr Ometov
  • Yevgeni Koucheryavy
  • Thomas Olsson
Chapter

Abstract

This chapter provides a multi-disciplinary overview of the research issues and achievements in the field of Big Data and its visualization techniques and tools. The main aim is to summarize challenges in visualization methods for existing Big Data, as well as to offer novel solutions for issues related to the current state of Big Data Visualization. This paper provides a classification of existing data types, analytical methods, visualization techniques and tools, with a particular emphasis placed on surveying the evolution of visualization methodology over the past years. Based on the results, we reveal disadvantages of existing visualization methods. Despite the technological development of the modern world, human involvement (interaction), judgment and logical thinking are necessary while working with Big Data. Therefore, the role of human perceptional limitations involving large amounts of information is evaluated. Based on the results, a non-traditional approach is proposed: we discuss how the capabilities of Augmented Reality and Virtual Reality could be applied to the field of Big Data Visualization. We discuss the promising utility of Mixed Reality technology integration with applications in Big Data Visualization. Placing the most essential data in the central area of the human visual field in Mixed Reality would allow one to obtain the presented information in a short period of time without significant data losses due to human perceptual issues. Furthermore, we discuss the impacts of new technologies, such as Virtual Reality displays and Augmented Reality helmets on the Big Data visualization as well as to the classification of the main challenges of integrating the technology.

Keywords

Virtual Reality Augmented Reality Visualization Technique Virtual Object Data Visualization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Manyika J, Chui M, Brown B, Bughin J, Dobbs R, Roxburgh C, Byers AH. Big Data: the next frontier for innovation, competition, and productivity. June Progress Report. McKinsey Global Institute; 2011.Google Scholar
  2. 2.
    Genomes: a Deep Catalog of Human Genetic Variation. 2015. http://www.1000genomes.org/.
  3. 3.
    Via M, Gignoux C, Burchard EG. The 1000 Genomes Project: new opportunities for research and social challenges. Genome Med. 2010;2(3):1.Google Scholar
  4. 4.
    Internet Archive: Internet Archive Wayback Machine. 2015. http://archive.org/web/web.php.
  5. 5.
    Nielsen J. Comparing content in web archives: differences between the Danish archive Netarkivet and Internet Archive. In: Two-day conference at Aarhus University, Denmark; 2015.Google Scholar
  6. 6.
    The Lemur Project: The ClueWeb09 Dataset. 2015. http://lemurproject.org/clueweb09.php/.
  7. 7.
    Russom P. Managing Big Data. TDWI Best Practices Report, TDWI Research; 2013.Google Scholar
  8. 8.
    Gantz J, Reinsel D. The digital universe in 2020: Big data, bigger digital shadows, and biggest growth in the far east. IDC iView IDC Anal Future. 2012;2007:1–16.Google Scholar
  9. 9.
    Beyer MA, Laney D. The importance of “Big Data”: a definition. Stamford: Gartner; 2012.Google Scholar
  10. 10.
    Demchenko Y, Ngo C, Membrey P. Architecture framework and components for the big data ecosystem. J Syst Netw Eng. 2013;1–31 (SNE technical report SNE-UVA-2013-02).Google Scholar
  11. 11.
    Turner V, Reinsel D, Gantz JF, Minton S. The digital universe of opportunities: rich data and the increasing value of the internet of things. IDC Anal Future; 2014.Google Scholar
  12. 12.
    Husain SS, Kalinin A, Truong A, Dinov ID. SOCR data dashboard: an integrated Big Data archive mashing medicare, labor, census and econometric information. J Big Data. 2015;2(1):1–18.CrossRefGoogle Scholar
  13. 13.
    Keahey TA. Using visualization to understand Big Data. IBM Bus Anal Adv Vis. 2013.Google Scholar
  14. 14.
    Microsoft Corporation: Power BI—Microsoft. 2015. https://powerbi.microsoft.com/.
  15. 15.
    Amazon.com, Inc. Amazone Web Services. 2015. https://aws.amazon.com/.
  16. 16.
    Google, Inc. Google Cloud Platform. 2015. https://cloud.google.com/.
  17. 17.
    Socrata. Data to the People. 2015. http://www.socrata.com.
  18. 18.
    D3.js: D3 Data-Draven Documents. 2015. http://d3js.org.
  19. 19.
    The Cytoscape Consortium: Network Data Integration, Analysis, and Visualization in Box. 2015. http://www.cytoscape.org.
  20. 20.
    Tableau—Business Intelligence and Analytics. http://tableau.com/.
  21. 21.
    Kandel S, Paepcke A., Hellerstein J, Heer J. Wrangler: interactive visual specification of data transformation scripts. In: Proceedings of the SIGCHI conference on human factors in computing systems, ACM; 2011. p. 3363–72.Google Scholar
  22. 22.
    Schaefer D, Chandramouly A, Carmack B, Kesavamurthy K. Delivering self-service BI, data visualization, and Big Data analytics. Intel IT: Business Intelligence; 2013.Google Scholar
  23. 23.
    Choy J, Chawla V, Whitman L. Data visualization techniques: from basics to Big Data with SAS visual analytics. SAS: White Paper; 2013.Google Scholar
  24. 24.
    Ganore P. Need to know what Big Data is? ESDS—Enabling Futurability; 2012.Google Scholar
  25. 25.
    Agrawal D, Das S, El Abbadi A. Big Data and cloud computing: current state and future opportunities. In: Proceedings of the 14th international conference on extending database technology, ACM; 2011. p. 530–3.Google Scholar
  26. 26.
    Kaur M. Challanges and issues during visualization of Big Data. Int J Technol Res Eng. 2013;1:174–6.Google Scholar
  27. 27.
    Childs H, Geveci B, Schroeder W, Meredith J, Moreland K, Sewell C, Kuhlen T, Bethel EW. Research challenges for visualization software. Computer. 2013;46:34–42.CrossRefGoogle Scholar
  28. 28.
    Press G. 12 Big Data definitions: what’s yours? Forbes; 2014.Google Scholar
  29. 29.
    Dutcher J. What is Big Data? Berkley School of Information; 2014.Google Scholar
  30. 30.
    Bashour N. The Big Data blog, Part V: interview with Dr. Ivo Dinov. 2014. http://www.aaas.org/news/big-data-blog-part-v-interview-dr-ivo-dinov.
  31. 31.
    Komodakis N, Pesquet JC. Playing with duality: an overview of recent primal-dual approaches for solving largescale optimization problems. 2014. http://arxiv.org/abs/1406.5429.
  32. 32.
    Manicassamy J, Kumar SS, Rangan M, Ananth V, Vengattaraman T, Dhavachelvan P. Gene suppressor: an added phase towards solving large scale optimization problems in genetic algorithm. Appl Soft Comput. 2015;35:214–26.CrossRefGoogle Scholar
  33. 33.
    Gartner—IT Glossary. Big Data defintion. http://www.gartner.com/it-glossary/big-data/.
  34. 34.
    Sicular S. Gartner’s Big Data definition consists of three parts, not to be confused with three “V”s, Gartner, Inc. Forbes; 2013.Google Scholar
  35. 35.
    Demchenko Y, De Laat C, Membrey P. Defining architecture components of the Big Data Ecosystem. In: Proceedings of international conference on collaboration technologies and systems (CTS), IEEE; 2014. p. 104–12.Google Scholar
  36. 36.
    Akerkar R. Big Data computing. Boca Raton: CRC Press, Taylor & Francis Group; 2013.CrossRefGoogle Scholar
  37. 37.
    Sethi IK, Jain AK. Artificial neural networks and statistical pattern recognition: old and new connections, vol 1. New York: Elsevier; 2014.zbMATHGoogle Scholar
  38. 38.
    Araghinejad S. Artificial neural networks. Data-driven modeling: using MATLAB in water resources and environmental engineering. Netherlands: Springer; 2014. p. 139–94.CrossRefGoogle Scholar
  39. 39.
    Larose DT. Discovering knowledge in data: an introduction to data mining. Hoboken: Wiley; 2014.zbMATHCrossRefGoogle Scholar
  40. 40.
    Maren AJ, Harston CT, Pap RM. Handbook of neural computing applications. Cambridge: Academic Press; 2014.zbMATHGoogle Scholar
  41. 41.
    Schmidhuber J. Deep learning in neural networks: an overview. Neural Netw. 2015;61:85–117.CrossRefGoogle Scholar
  42. 42.
    McCue C. Data mining and predictive analysis: intelligence gathering and crime analysis. Butterworth-Heinemann; 2014.Google Scholar
  43. 43.
    Rudin C, Dunson D, Irizarry R, Ji H, Laber E, Leek J, McCormick T, Rose S, Schafer C, van der Laan M et al. Discovery with data: leveraging statistics with computer science to transform science and society. 2014.Google Scholar
  44. 44.
    Cressie N. Statistics for spatial data. Hoboken: Wiley; 2015.zbMATHGoogle Scholar
  45. 45.
    Lehnert WG, Ringle MH. Strategies for natural language processing. Hove: Psychology Press; 2014.Google Scholar
  46. 46.
    Chu WW, editor. Data mining and knowledge discovery for Big Data. Studies in Big Data, vol 1. Heidelberg: Springer; 2014.Google Scholar
  47. 47.
    Berry MJ, Linoff G. Data mining techniques: for marketing, sales, and customer support. New York: Wiley; 1997.Google Scholar
  48. 48.
    PhridviRaj M, GuruRao C. Data mining-past, present and future-a typical survey on data streams. Procedia Technol. 2014;12:255–63.CrossRefGoogle Scholar
  49. 49.
    Zaki MJ, Meira W Jr. Data mining and analysis: fundamental concepts and algorithms. Cambridge: Cambridge University Press; 2014.zbMATHGoogle Scholar
  50. 50.
    Sutskever I, Vinyals O, Le QV. Sequence to sequence learning with neural networks. In: Advances in neural information processing systems; 2014. p. 3104–12.Google Scholar
  51. 51.
    Rojas R, Feldman J. Neural networks: a systematic introduction. New York: Springer; 2013.Google Scholar
  52. 52.
    Gurney K. An introduction to neural networks. Milton Park: Taylor & Francis; 2003.Google Scholar
  53. 53.
    Mohri M, Rostamizadeh A, Talwalkar A. Foundations of machine learning. Adaptive computation and machine learning series. Cambridge: MIT Press; 2012.zbMATHGoogle Scholar
  54. 54.
    Murphy KP. Machine learning: a probabilistic perspective. Adaptive computation and machine learning series. Cambridge: MIT Press; 2012.zbMATHGoogle Scholar
  55. 55.
    Alpaydin E. Introduction to machine learning. Adaptive computation and machine learning series. Cambridge: MIT Press; 2014.zbMATHGoogle Scholar
  56. 56.
    Vetterli M, Kovačević J, Goyal VK. Foundations of signal processing. Cambridge: Cambridge University Press; 2014.Google Scholar
  57. 57.
    Xhafa F, Barolli L, Barolli A, Papajorgji P. Modeling and processing for next-generation big-data technologies: with applications and case studies. Modeling and optimization in science and technologies. New York: Springer; 2014.Google Scholar
  58. 58.
    Giannakis GB, Bach F, Cendrillon R, Mahoney M, Neville J. Signal processing for Big Data. Signal Process Mag IEEE. 2014;31(5):15–6.CrossRefGoogle Scholar
  59. 59.
    Shneiderman B. The big picture for Big Data: visualization. Science. 2014;343:730.CrossRefGoogle Scholar
  60. 60.
    Marr B. Big Data: using SMART Big Data. Analytics and metrics to make better decisions and improve performance. Hoboken: Wiley; 2015.Google Scholar
  61. 61.
    Minelli M, Chambers M, Dhiraj A. Big Data, big analytics: emerging business intelligence and analytic trends for today’s businesses. Hoboken: Wiley; 2012.Google Scholar
  62. 62.
    Puget JF. Optimization is ready for Big Data. IBM White Paper. 2015.Google Scholar
  63. 63.
    Poli R, Rowe JE, Stephens CR, Wright AH. Allele diffusion in linear genetic programming and variable-length genetic algorithms with subtree crossover. New York: Springer; 2002.zbMATHCrossRefGoogle Scholar
  64. 64.
    Langdon WB. Genetic programming and data structures: genetic programming + data structures = Automatic Programming!, vol. 1. New York: Springer; 2012.zbMATHGoogle Scholar
  65. 65.
    Poli R, Koza J. Genetic programming. New York: Springer; 2014.CrossRefGoogle Scholar
  66. 66.
    Kothari DP. Power system optimization. In: Proceedings of 2nd national conference on computational intelligence and signal processing (CISP), IEEE; 2012. p. 18–21.Google Scholar
  67. 67.
    Moradi M, Abedini M. A combination of genetic algorithm and particle swarm optimization for optimal DG location and sizing in distribution systems. Int J Electr Power Energy Syst. 2012;34(1):66–74.CrossRefGoogle Scholar
  68. 68.
    Engelbrecht A. Particle swarm optimization. In: Proceedings of the 2014 conference companion on genetic and evolutionary computation companion, ACM; 2014. p. 381–406.Google Scholar
  69. 69.
    Melanie M. An introduction to genetic algorithms. Cambridge, Fifth printing; 1999. p. 3.Google Scholar
  70. 70.
    Kitchin R. The data revolution: big data, open data. Data infrastructures and their consequences. California: SAGE Publications; 2014.CrossRefGoogle Scholar
  71. 71.
    Pébay P, Thompson D, Bennett J, Mascarenhas A. Design and performance of a scalable, parallel statistics toolkit. In: Proceedings of international symposium on parallel and distributed processing workshops and Phd forum (IPDPSW), IEEE; 2011. p. 1475–84.Google Scholar
  72. 72.
    Bennett J, Grout R, Pébay P, Roe D, Thompson D. Numerically stable, single-pass, parallel statistics algorithms. In: International conference on cluster computing and workshops, IEEE; 2009. p. 1–8.Google Scholar
  73. 73.
    Lake P, Drake R. Information systems management in the Big Data era. Advanced information and knowledge processing. New York: Springer; 2015.Google Scholar
  74. 74.
    Anselin L, Getis A. Spatial statistical analysis and geographic information systems. Perspectives on spatial data analysis. New York: Springer; 2010. p. 35–47.CrossRefGoogle Scholar
  75. 75.
    Kaufman L, Rousseeuw PJ. Finding groups in data: an introduction to cluster analysis, vol. 344. Hoboken: Wiley; 2009.Google Scholar
  76. 76.
    Anderberg MR. Cluster analysis for applications: probability and mathematical statistics—a series of monographs and textbooks, vol. 19. Cambridge: Academic press; 2014.Google Scholar
  77. 77.
    Hastie T, Tibshirani R, Friedman J. Unsupervised learning. New York: Springer; 2009.zbMATHGoogle Scholar
  78. 78.
    Fisher DH, Pazzani MJ, Langley P. Concept formation: knowledge and experience in unsupervised learning. Burlington: Morgan Kaufmann; 2014.Google Scholar
  79. 79.
    McKenzie M, Wong S. Subset selection of training data for machine learning: a situational awareness system case study. In: SPIE sensing technology + applications. International society for optics and photonics; 2015.Google Scholar
  80. 80.
    Aggarwal CC. Data classification: algorithms and applications. Boca Raton: CRC Press; 2014.Google Scholar
  81. 81.
    Ryan TP. Modern regression methods. Wiley series in probability and statistics. Hoboken: Wiley; 2008.Google Scholar
  82. 82.
    Zhang C, Zhang S. Association rule mining: models and algorithms. New York: Springer; 2002.zbMATHCrossRefGoogle Scholar
  83. 83.
    Cleophas TJ, Zwinderman AH. Machine learning in medicine: part two. Machine learning in medicine. New York: Springer; 2013.CrossRefGoogle Scholar
  84. 84.
    Bishop CM. Pattern recognition and machine learning. New York: Springer; 2006.zbMATHGoogle Scholar
  85. 85.
    Devroye L, Györfi L, Lugosi G. A probabilistic theory of pattern recognition, vol. 31. New York: Springer; 2013.zbMATHGoogle Scholar
  86. 86.
    Powers DM, Turk CC. Machine learning of natural language. New York: Springer; 2012.zbMATHGoogle Scholar
  87. 87.
    Liu B, Zhang L. A survey of opinion mining and sentiment analysis. Mining text data. New York: Springer; 2012. p. 415–63.CrossRefGoogle Scholar
  88. 88.
    Polikar R. Ensemble learning. Ensemble machine learning. New York: Springer; 2012. p. 1–34.CrossRefGoogle Scholar
  89. 89.
    Zhang C, Ma Y. Ensemble machine learning. New York: Springer; 2012.zbMATHCrossRefGoogle Scholar
  90. 90.
    Helstrom CW. Statistical theory of signal detection: international series of monographs in electronics and instrumentation, vol. 9. Amsterdam: Elsevier; 2013.Google Scholar
  91. 91.
    Shumway RH, Stoffer DS. Time series analysis and its applications. New York: Springer; 2013.zbMATHGoogle Scholar
  92. 92.
    Akaike H, Kitagawa G. The practice of time series analysis. New York: Springer; 2012.zbMATHGoogle Scholar
  93. 93.
    Viswanathan R. Data fusion. Computer vision. Springer: New York; 2014. p. 166–8.CrossRefGoogle Scholar
  94. 94.
    Castanedo F. A review of data fusion techniques. Sci World J. 2013.Google Scholar
  95. 95.
    Thompson D, Levine JA, Bennett JC, Bremer PT, Gyulassy A, Pascucci V, Pébay PP. Analysis of large-scale scalar data using hixels. In: Proceedings of symposium on large data analysis and visualization (LDAV), IEEE. 2011. p. 23–30.Google Scholar
  96. 96.
    Report: Data Visualization Applications Market Future Of Decision Making Trends, Forecasts And The Challengers (2014–2019). Mordor Intelligence; 2014.Google Scholar
  97. 97.
    SAS: Data visualization: making big data approachable and valuable. Market Pulse: White Paper; 2013.Google Scholar
  98. 98.
    Simon P. The visual organization: data visualization, Big Data, and the quest for better decisions. Hoboken: Wiley; 2014.Google Scholar
  99. 99.
    Kaisler S, Armour F, Espinosa JA, Money W. Big Data: issues and challenges moving forward. In: Proceedings of 46th Hawaii international conference on system sciences (HICSS), IEEE. 2013. p. 995–1004.Google Scholar
  100. 100.
    Tole AA, et al. Big Data challenges. Database Syst J. 2013;4(3):31–40.MathSciNetGoogle Scholar
  101. 101.
    Chen M, Mao S, Zhang Y, Leung VC. Big Data: related technologies. Challenges and future prospects. New York: Springer; 2014.CrossRefGoogle Scholar
  102. 102.
    Miksch S, Aigner W. A matter of time: applying a data-users-tasks design triangle to visual analytics of time-oriented data. Comput Graph. 2014;38:286–90.CrossRefGoogle Scholar
  103. 103.
    MiilIer W, Schumann H. Visualization method for time-dependent data: an overview. In: Proceedings of the 2003 winter simulation conference, vol. 1. IEEE. 2003.Google Scholar
  104. 104.
    Telea AC. Data visualization: principles and practice, 2nd ed. Milton Park: Taylor & Francis; 2014.Google Scholar
  105. 105.
    Wright H. Introduction to scientific visualization. New York: Springer; 2007.zbMATHGoogle Scholar
  106. 106.
    Bonneau GP, Ertl T, Nielson G. Scientific visualization: the visual extraction of knowledge from data. Mathematics and visualization. New York: Springer; 2006.zbMATHCrossRefGoogle Scholar
  107. 107.
    Rosenblum L, Rosenblum LJ. Scientific visualization: advances and challenges. Policy Series; 19. Academic; 1994.Google Scholar
  108. 108.
    Ware C. Information visualization: perception for design. Burlington: Morgan Kaufmann; 2013.Google Scholar
  109. 109.
    Kerren A, Stasko J, Fekete JD. Information visualization: human-centered issues and perspectives. LNCS sublibrary: information systems and applications, incl. Internet/Web, and HCI. New York: Springer; 2008.Google Scholar
  110. 110.
    Mazza R. Introduction to information visualization. Computer science. New York: Springer; 2009.Google Scholar
  111. 111.
    Bederson BB, Shneiderman B. The craft of information visualization: readings and reflections. Interactive technologies. Amsterdam: Elsevier Science; 2003.Google Scholar
  112. 112.
    Dill J, Earnshaw R, Kasik D, Vince J, Wong PC. Expanding the frontiers of visual analytics and visualization. SpringerLink: Bücher. New York: Springer; 2012.CrossRefGoogle Scholar
  113. 113.
    Simoff S, Böhlen MH, Mazeika A. Visual data mining: theory, techniques and tools for visual analytics. LNCS sublibrary: information systems and applications, incl. Internet/Web, and HCI. New York: Springer; 2008.Google Scholar
  114. 114.
    Zhang Q. Visual analytics and interactive technologies: data, text and web mining applications: data. information science reference: text and web mining applications. Premier reference source; 2010.Google Scholar
  115. 115.
    Few S, EDGE P. Data visualization: past, present, and future. IBM Cognos Innovation Center; 2007.Google Scholar
  116. 116.
    Bertin J. La graphique. Communications. 1970;15:169–85.CrossRefGoogle Scholar
  117. 117.
    Gray JJ. Johann Heinrich Lambert, mathematician and scientist, 1728–1777. Historia Math. 1978;5:13–41.MathSciNetzbMATHCrossRefGoogle Scholar
  118. 118.
    Tufte ER. The visual display for quantitative information. Chelshire: Graphics Press; 1983.Google Scholar
  119. 119.
    Kehrer J, Boubela RN, Filzmoser P, Piringer H. A generic model for the integration of interactive visualization and statistical computing using R. In: Conference on visual analytics science and technology (VAST), IEEE. 2012. p. 233–34.Google Scholar
  120. 120.
    Härdle W, Klinke S, Turlach B. XploRe: an interactive statistical computing environment. New York: Springer; 2012.zbMATHGoogle Scholar
  121. 121.
    Friendly M. A brief history of data visualization. New York: Springer; 2006.Google Scholar
  122. 122.
    Mering C. Traditional node-link diagram of a network of yeast protein-protein and protein-DNA interactions with over 3,000 nodes and 6,800 links. Nature. 2002;417:399–403.CrossRefGoogle Scholar
  123. 123.
    Febretti A, Nishimoto A, Thigpen T, Talandis J, Long L, Pirtle J, Peterka T, Verlo A, Brown M, Plepys D et al. CAVE2: a hybrid reality environment for immersive simulation and information analysis. In: IS&T/SPIE electronic imaging. International Society for Optics and Photonics; 2013.Google Scholar
  124. 124.
    Friendly M. Milestones in the history of data visualization: a case study in statistical historiography. Classification: the ubiquitous challenge. Springer: New York; 2005. p. 34–52.CrossRefGoogle Scholar
  125. 125.
    Tory M, Kirkpatrick AE, Atkins MS, Moller T. Visualization task performance with 2D, 3D, and combination displays. IEEE Trans Visual Comput Graph. 2006;12(1):2–13.CrossRefGoogle Scholar
  126. 126.
    Stanley R, Oliveria M, Zaiane OR. Geometric data transformation for privacy preserving clustering. Departament of Computing Science; 2003.Google Scholar
  127. 127.
    Healey CG, Enns JT. Large datasets at a glance: combining textures and colors in scientific visualization. IEEE Trans Visual Comput Graph. 1999;5(2):145–67.CrossRefGoogle Scholar
  128. 128.
    Keim DA. Designing pixel-oriented visualization techniques: theory and applications. IEEE Trans Visual Comput Graph. 2000;6(1):59–78.CrossRefGoogle Scholar
  129. 129.
    Kamel M, Camphilho A. Hierarchic image classification visualization. In: Proceedings of image analysis and recognition 10th international conference, ICIAR. 2013.Google Scholar
  130. 130.
    Buja A, Cook D, Asimov D, Hurley C. Computational methods for high-dimensional rotations in data visualization. Handbook Stat Data Mining Data Visual. 2004;24:391–415.CrossRefGoogle Scholar
  131. 131.
    Meijester A, Westenberg MA, Wilkinson MHF. Interactive shape preserving filtering and visualization of volumetric data. In: Proceedings of the fourth IASTED international conference. 2002. p. 640–43.Google Scholar
  132. 132.
    Borg I, Groenen P. Modern multidimensional scaling: theory and applications. J Educ Measure. 2003;40:277–80.zbMATHCrossRefGoogle Scholar
  133. 133.
    Bajaj C, Krishnamurthy B. Data visualization techniques, vol. 6. Hoboken: Wiley; 1999.Google Scholar
  134. 134.
    Plaisant C, Monroe M, Meyer T, Shneiderman B. Interactive visualization. Boca Raton: CRC Press; 2014.Google Scholar
  135. 135.
    Janvrin DJ, Raschke RL, Dilla WN. Making sense of complex data using interactive data visualization. J Acc Educ. 2014;32(4):31–48.CrossRefGoogle Scholar
  136. 136.
    Manyika J, Chui M, Brown B, Bughin J, Dobbs R, Roxburgh C, Byers AH. Big data: the next frontier for innovation, competition, and productivity. McKinsey Global Institute. 2011.Google Scholar
  137. 137.
    Ebert A, Dix A, Gershon ND, Pohl M. Human aspects of visualization: second IFIP WG 13.7 workshop on humancomputer interaction and visualization, HCIV (INTERACT), Uppsala, Sweden, August 24, 2009, Revised Selected Papers. LNCS sublibrary: information systems and applications, incl. Internet/Web, and HCI. Springer; 2009. p 2011.Google Scholar
  138. 138.
    Schonlau M. Visualizing non-hierarchical and hierarchical cluster analyses with clustergrams. Comput Stat. 2004;19(1):95–111.MathSciNetzbMATHCrossRefGoogle Scholar
  139. 139.
    Google, Inc.: Google Visualization Guide. 2015. https://developers.google.com.
  140. 140.
    Amcharts.com: amCharts visualization. 2004–2015. http://www.amcharts.com/.
  141. 141.
    Viégas F, Wattenberg M. IBM—Many Eyes Project. 2013. http://www-01.ibm.com/software/analytics/many-eyes/.
  142. 142.
    Körner C. Data Visualization with D3 and AngularJS. Community experience distilled. Birmingham: Packt Publishing; 2015.Google Scholar
  143. 143.
    Azzam T, Evergreen S. J-B PE single issue (program) evaluation, vol. pt. 1. Wiley.Google Scholar
  144. 144.
    Machlis S. Chart and image gallery: 30 + free tools for data visualization and analysis. 2015. http://www.computerworld.com/.
  145. 145.
    Julie Steele NI. Beautiful visualization: looking at data through the eyes of experts. O’Reilly Media; 2010.Google Scholar
  146. 146.
    Guberman S. On Gestalt theory principles. Gestalt Theory. 2015;37(1):25–44.Google Scholar
  147. 147.
    Chen C. Top 10 unsolved information visualization problems. Comput Graph Appl IEEE. 2005;25(4):12–6.CrossRefGoogle Scholar
  148. 148.
    Johnson C. Top scientific visualization research problems. Comput Graph Appl IEEE. 2004;24(4):13–7.CrossRefGoogle Scholar
  149. 149.
    Tory M, Möller T. Human factors in visualization research. Trans Visual Comput Graph. 2004;10(1):72–84.CrossRefGoogle Scholar
  150. 150.
    Andrews C, Endert A, Yost B, North C. Information visualization on large, high-resolution displays: Issues, challenges, and opportunities. Inf Vis. 2011.Google Scholar
  151. 151.
    Suthaharan S. Big Data classification: problems and challenges in network intrusion prediction with machine learning. ACM SIGMETRICS. 2014;41:70–3.CrossRefGoogle Scholar
  152. 152.
    Field DJ, Hayes A, Hess RF. Contour integration by the human visual system: evidence for a local “association field”. Vision Res. 1993;33:173–93.CrossRefGoogle Scholar
  153. 153.
    Picard RW, Healy J. Affective wearables, vol. 1. New York: Springer; 1997. p. 231–40.Google Scholar
  154. 154.
    Mann S et al. Wearable technology. St James Ethics Centre; 2014.Google Scholar
  155. 155.
    Carmigniani J, Furht B, Anisetti M, Ceravolo P, Damiani E, Ivkovic M. Augmented reality technologies, systems and applications. 2010;51:341–77.Google Scholar
  156. 156.
    Papagiannakis G, Singh G, Magnenat-Thalmann N. A survey of mobile and wireless technologies for augmented reality systems. Comput Anim Virtual Worlds. 2008;19(1):3–22.CrossRefGoogle Scholar
  157. 157.
    Caudell TP, Mizell DW. Augmented reality: an application of heads-up display technology to manual manufacturing processes. IEEE Syst Sci. 1992;2:659–69.Google Scholar
  158. 158.
    Sutherland I. A head-mounted three dimensional display. In: Proceedings of the fall joint computer conference. 1968. p. 757–64.Google Scholar
  159. 159.
    Chacos B. Shining light on virtual reality: busting the 5 most inaccurate Oculus Rift myths. PCWorld; 2014.Google Scholar
  160. 160.
    Krevelen DWF, Poelman R. A survey of augmented reality technologies, applications and limitations. Int J Virtual Real. 2010;9:1–20.Google Scholar
  161. 161.
    Stevens J, Eifert L. Augmented reality technology in US army training (WIP). In: Proceedings of the 2014 summer simulation multiconference, society for computer simulation international. 2014. p. 62.Google Scholar
  162. 162.
    Bower M, Howe C, McCredie N, Robinson A, Grover D. Augmented reality in education-cases, places and potentials. Educ Media Int. 2014;51(1):1–15.CrossRefGoogle Scholar
  163. 163.
    Ma M, Jain LC, Anderson P. Future trends of virtual, augmented reality, and games for health. Virtual, augmented reality and serious games for healthcare, vol. 1. New York: Springer; 2014. p. 1–6.CrossRefGoogle Scholar
  164. 164.
    Mousavi M, Abdul Aziz F, Ismail N. Investigation of 3D modelling and virtual reality systems in malaysian automotive industry. In: Proceedings of international conference on computer, communications and information technology. Atlantis Press. 2014.Google Scholar
  165. 165.
    Chung IC, Huang CY, Yeh SC, Chiang WC, Tseng MH. Developing kinect games integrated with virtual reality on activities of daily living for children with developmental delay. Advanced technologies, embedded and multimedia for human-centric computing. New York: Springer; 2014. p. 1091–7.CrossRefGoogle Scholar
  166. 166.
    Steptoe W. AR-Rift: stereo camera for the rift and immersive AR showcase. Oculus Developer Forums. 2013.Google Scholar
  167. 167.
    Pina JL, Cerezo E, Seron F. Semantic visualization of 3D urban environments. Multimed Tools Appl. 2012;59:505–21.CrossRefGoogle Scholar
  168. 168.
    Fonseca D, Villagrasa S, Marta N, Redondo E, Sanchez A. Visualization methods in architecture education using 3D virtual models and augmented reality in mobile and social networks. Procedia Soc Behav Sci. 2013;93:1337–43.CrossRefGoogle Scholar
  169. 169.
    Varkey JP, Pompili D, Walls TA. Human motion recognition using a wireless sensor-based wearable system. Personal Ubiquitous Comput. 2011;16:897–910.CrossRefGoogle Scholar
  170. 170.
    Nuwer R. Armband adds a twitch to gesture control. New Sci. 2013;217(2906):21.CrossRefGoogle Scholar
  171. 171.
    Timberlake GT, Mainster MA, Peli E, Augliere RA, Essock EA, Arend LE. Reading with a macular scotoma I Retinal location of scotoma and fixation area. Investig Ophthalmol Visual Sci. 1986;27(7):1137–47.Google Scholar
  172. 172.
    Foster PJ, Buhrmann R, Quigley HA, Johnson GJ. The definition and classification of glaucoma in prevalence surveys. Br J Ophthalmol. 2002;86:238–42.CrossRefGoogle Scholar
  173. 173.
    Deering MF. The limits of human vision. In: Proceedings the 2nd international immersive projection technology workshop. 1998.Google Scholar
  174. 174.
    Krantz J. Experiencing sensation and perception. Pearson Education (US). 2012.Google Scholar
  175. 175.
    Rajanbabu A, Drudi L, Lau S, Press JZ, Gotlieb WH. Virtual reality surgical simulators-a prerequisite for robotic surgery. Indian J Surg Oncol. 2014;5(2):1–3.CrossRefGoogle Scholar
  176. 176.
    Moglia A, Ferrari V, Morelli L, Melfi F, Ferrari M, Mosca F, Cuschieri A. Distribution of innate ability for surgery amongst medical students assessed by an advanced virtual reality surgical simulator. Surg Endosc. 2014;28(6):1830–7.CrossRefGoogle Scholar
  177. 177.
    Ahn W, Dargar S, Halic T, Lee J, Li B, Pan J, Sankaranarayanan G, Roberts K, De S. Development of a virtual reality simulator for natural orifice translumenal endoscopic surgery (NOTES) cholecystectomy procedure. Medicine Meets Virtual Reality 21: NextMed/MMVR21 2014;196, 1.Google Scholar
  178. 178.
    Ma M, Jain LC, Anderson P. Virtual, augmented reality and serious games for healthcare 1. New York: Springer; 2014.CrossRefGoogle Scholar
  179. 179.
    Wright WG. Using virtual reality to augment perception, enhance sensorimotor adaptation, and change our minds. Front Syst Neurosci. 2014;8:56.CrossRefGoogle Scholar
  180. 180.
    Parsons TD, Trost Z. Virtual reality graded exposure therapy as treatment for pain-related fear and disability in chronic pain. Virtual, augmented reality and serious games for healthcare 1. New York: Springer; 2014. p. 523–46.CrossRefGoogle Scholar
  181. 181.
    Abramov I, Gordon J, Feldman O, Chavarga A. Biology of sex differences. p. 1–14.Google Scholar
  182. 182.
    McFadden D. Masculinization effects in the auditory system. Archiv Sexual Behav. 2002;31(1):99–111.CrossRefGoogle Scholar
  183. 183.
    Voyer D, Voyer S, Bryden MP. Magnitude of sex differences in spatial abilities: a meta-analysis and consideration of critical variables. Psychol Bull. 1995;117:250–70.zbMATHCrossRefGoogle Scholar
  184. 184.
    Stancey H, Turner M. Close women, distant men: line bisection reveals sex-dimorphic patterns of visuomotor performance in near and far space. Br J Psychol. 2010;101:293–309.CrossRefGoogle Scholar
  185. 185.
    Rizzolatti G, Matelli M, Pavesi G. Deficits in attention and movement following the removal of postarcuate (area 6) and prearcuate (area 8) cortex in macaque monkeys. Brain. 1983;106:655–73.CrossRefGoogle Scholar
  186. 186.
    Chua HF, Boland JE, Nisbett RE. Cultural variation in eye movements during scene perception. PNA. 2005;102(35):12629–33.CrossRefGoogle Scholar
  187. 187.
    Zelinsky GJ, Adeli H, Peng Y, Samaras D. Modelling eye movements in a categorical search task. Philos Trans R Soc. 2013.Google Scholar
  188. 188.
    Piumsomboon T, Clark A, Billinghurst M, Cockburn A. user-defined gestures for augmented reality. In: Human computer interaction–INTERACT 2013, Springer. 2013. p. 282–99.Google Scholar
  189. 189.
    Mistry P, Maes P, Chang L. WUW-wear Ur world: a wearable gestural interface. In: Extended abstracts on human factors in computing systems, ACM. 2009. p. 4111–16.Google Scholar
  190. 190.
    Vanacken D, Beznosyk A, Coninx K. Help systems for gestural interfaces and their effect on collaboration and communication. In: Workshop on gesture-based interaction design: communication and cognition. 2014.Google Scholar
  191. 191.
    Mulling T, Lopes C, Cabreira A. Gestural interfaces touchscreen: thinking interactions beyond the button from interaction design for Gmail Android App. In: Design, sser experience, and usability. User experience design for diverse interaction platforms and environments. Springer. 2014. p. 279–88.Google Scholar
  192. 192.
    Piumsomboon T, Clark A., Billinghurst M. [DEMO] G-SIAR: gesture-speech interface for augmented reality. In: Proceedings of International symposium on mixed and augmented reality (ISMAR), IEEE; 2014. p. 365–66.Google Scholar
  193. 193.
    Vafadar M, Behrad A. A vision based system for communicating in virtual reality environments by recognizing human hand gestures. Multi Tools Appl. 2014;74(18):1–21.Google Scholar
  194. 194.
    Roupé M, Bosch-Sijtsema P, Johansson M. Interactive navigation interface for Virtual Reality using the human body. Comput Environ Urban Syst. 2014;43:42–50.CrossRefGoogle Scholar
  195. 195.
    Wen R, Tay WL, Nguyen BP, Chng CB, Chui CK. Hand gesture guided robot-assisted surgery based on a direct augmented reality interface. Comput Method Program Biomed. 2014;116(2):68–80.CrossRefGoogle Scholar
  196. 196.
    Rolland JP, Fuchs H. Optical versus video see-through head-mounted displays in medical visualization. Presence Teleoperators Virtual Environ. 2000;9(3):287–309.CrossRefGoogle Scholar
  197. 197.
    Silanon K, Suvonvorn N. Real time hand tracking as a user input device. New York: Springer; 2011. p. 178–89.Google Scholar
  198. 198.
    Keim DA, Mansmann F, Schneidewind J, Ziegler H. Challenges in visual data analysis. In: Proceedings of 10th international conference on information visualization, IEEE. 2006. p. 9–16.Google Scholar
  199. 199.
    Sonka M, Hlavac V, Boyle R. Image processing, analysis, and machine vision. Cengage Learning. 2014.Google Scholar
  200. 200.
    Shneiderman B. The eyes have it: a task by data type taxonomy for information visualizations. In: Proceedings of IEEE symposium on visual languages. 1996. p. 336–43.Google Scholar
  201. 201.
    Coffey D, Malbraaten N, Le T, Borazjani I, Sotiropoulos F, Keefe DF. Slice WIM: a multi-surface, multi-touch interface for overview + detail exploration of volume datasets in virtual reality. In: Proceedings of symposium on interactive 3D graphics and games, ACM. 2011. p. 191–98.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Ekaterina Olshannikova
    • 1
  • Aleksandr Ometov
    • 1
  • Yevgeni Koucheryavy
    • 1
  • Thomas Olsson
    • 2
  1. 1.Department of Electronics and Communications EngineeringTampere University of TechnologyTampereFinland
  2. 2.Department of Pervasive ComputingTampere University of TechnologyTampereFinland

Personalised recommendations