Distance Queries in Large-Scale Fully Dynamic Complex Networks

  • Gianlorenzo D’Angelo
  • Mattia D’Emidio
  • Daniele Frigioni
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9843)


The 2-hop cover labeling of a graph is a data structure that recently received a lot of attention since it can be exploited to efficiently answer to shortest-path distance queries on large-scale networks. In this paper, we propose the first dynamic algorithm to update 2-hop cover labelings for distance queries under edge removals, and show that: (i) it is efficient in terms of the number of nodes that change their distance toward some other node of the network, as a consequence of an edge removal; (ii) it is able to preserve the minimality of the labeling, a desirable property that has impact on both size and query time. In addition, we combine the new method with the unique algorithm in the literature suitable to handle edge additions, thus obtaining the first fully dynamic algorithm for updating 2-hop cover labelings for distance queries. We also conduct an extensive experimental study on real and synthetic dynamic networks, to show the scalability and efficiency of our new methods.


Short Path Query Time Dynamic Algorithm Affected Node Edge Removal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Abraham, I., Delling, D., Goldberg, A.V., Werneck, R.F.: Hierarchical hub labelings for shortest paths. In: Epstein, L., Ferragina, P. (eds.) ESA 2012. LNCS, vol. 7501, pp. 24–35. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  2. 2.
    Akiba, T., Iwata, Y., Yoshida, Y.: Fast exact shortest-path distance queries on large networks by pruned landmark labeling. In: Proceedings of International Conference on Management of Data (SIGMOD 2013), pp. 349–360. ACM (2013)Google Scholar
  3. 3.
    Akiba, T., Iwata, Y., Yoshida, Y.: Dynamic and historical shortest-path distance queries on large evolving networks by pruned landmark labeling. In: Proceedings of 23rd International World Wide Web Conference (WWW 2014), pp. 237–248. ACM (2014)Google Scholar
  4. 4.
    Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.U.: Complex networks: structure and dynamics. Phys. Rep. 424(4–5), 175–308 (2006)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Bruera, F., Cicerone, S., D’Angelo, G., Stefano, G.D., Frigioni, D.: Dynamic multi-level overlay graphs for shortest paths. Math. Comput. Sci. 1(4), 709–736 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Cionini, A., D’Angelo, G., D’Emidio, M., Frigioni, D., Giannakopoulou, K., Paraskevopoulos, A., Zaroliagis, C.D.: Engineering graph-based models for dynamic timetable information systems. In: ATMOS. OASICS, vol. 42, pp. 46–61. Schloss Dagstuhl (2014)Google Scholar
  7. 7.
    Cohen, E., Halperin, E., Kaplan, H., Zwick, U.: Reachability and distance queries via 2-hop labels. In: Proceedings of the 13th ACM-SIAM Symposium on Discrete Algorithms (SODA 2002), pp. 937–946. ACM/SIAM (2002)Google Scholar
  8. 8.
    D’Angelo, G., D’Emidio, M., Frigioni, D.: Fully dynamic update of arc-flags. Networks 63(3), 243–259 (2014)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Delling, D., Goldberg, A.V., Pajor, T., Werneck, R.F.: Robust distance queries on massive networks. In: Schulz, A.S., Wagner, D. (eds.) ESA 2014. LNCS, vol. 8737, pp. 321–333. Springer, Heidelberg (2014)Google Scholar
  10. 10.
    Delling, D., Goldberg, A.V., Pajor, T., Werneck, R.F.: Customizable route planning. In: Pardalos, P.M., Rebennack, S. (eds.) SEA 2011. LNCS, vol. 6630, pp. 376–387. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  11. 11.
    Delling, D., Goldberg, A.V., Savchenko, R., Werneck, R.F.: Hub labels: theory and practice. In: Gudmundsson, J., Katajainen, J. (eds.) SEA 2014. LNCS, vol. 8504, pp. 259–270. Springer, Heidelberg (2014)Google Scholar
  12. 12.
    Delling, D., Italiano, G.F., Pajor, T., Santaroni, F.: Better transit routing by exploiting vehicle GPS data. In: Proceedings of the 7th SIGSPATIAL International Workshop on Computational Transportation Science (IWCTS 2014), pp. 31–40. ACM (2014)Google Scholar
  13. 13.
    Jin, R., Ruan, N., Xiang, Y., Lee, V.E.: A highway-centric labeling approach for answering distance queries on large sparse graphs. In: Proceedings of International Conference on Management of Data (SIGMOD 2012), pp. 445–456. ACM (2012)Google Scholar
  14. 14.
    Potamias, M., Bonchi, F., Castillo, C., Gionis, A.: Fast shortest path distance estimation in large networks. In: Proceedings of 18th ACM Conference on Information and Knowledge Management (CIKM 2009), pp. 867–876. ACM (2009)Google Scholar
  15. 15.
    Qin, Y., Sheng, Q.Z., Zhang, W.E.: SIEF: efficiently answering distance queries for failure prone graphs. In: Proceedings of the 18th International Conference on Extending Database Technology (EDBT 2015), pp. 145–156. (2015)Google Scholar
  16. 16.
    Vieira, M.V., Fonseca, B.M., Damazio, R., Golgher, P.B., de Castro Reis, D., Ribeiro-Neto, B.A.: Efficient search ranking in social networks. In: Proceedings of the 16th Conference on Information and Knowledge Management (CIKM 2007), pp. 563–572. ACM (2007)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Gianlorenzo D’Angelo
    • 1
  • Mattia D’Emidio
    • 1
  • Daniele Frigioni
    • 2
  1. 1.Gran Sasso Science Institute (GSSI)L’AquilaItaly
  2. 2.Dipartimento di Ingegneria e Scienze dell’Informazione e MatematicaUniversitá degli Studi dell’AquilaL’AquilaItaly

Personalised recommendations