Evangelism in Social Networks

  • Gennaro Cordasco
  • Luisa Gargano
  • Adele A. Rescigno
  • Ugo Vaccaro
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9843)

Abstract

We consider a population of interconnected individuals that, with respect to a piece information, at each time instant can be subdivided into three (time-dependent) categories: agnostic, influenced, and evangelists. A dynamical process of information diffusion evolves among the individuals of the population according to the following rules. Initially, all individuals are agnostic. Then, a set of people is chosen from the outside and convinced to start evangelizing, i.e., to start spreading the information. When a number of evangelists, greater than a given threshold, communicate with an node v, the node v becomes influenced, whereas, as soon as the individual v is contacted by a sufficiently much larger number of evangelists, it is itself converted into an evangelist and consequently it starts spreading the information. The question is: How to choose a bounded cardinality initial set of evangelists so as to maximize the final number of influenced individuals? We prove that the problem is hard to solve, even in an approximate sense, and we present exact polynomial time algorithms for trees and complete graphs. For general graphs, we derive exact algorithms parameterized with respect to neighborhood diversity. We also study the problem when the objective is to select a minimum number of evangelists able of influencing the whole network.

References

  1. 1.
    Ackerman, E., Ben-Zwi, O., Wolfovitz, G.: Combinatorial model and bounds for target set selection. Theor. Comput. Sci. 411, 4017–4022 (2010)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Adamic, L.A., Lento, T.M., Adar, E., Ng, P.C.: Information evolution in social networks. In: Proceedings of the 9th ACM WSDM 2016, pp. 473–482 (2016)Google Scholar
  3. 3.
    Bazgan, C., Chopin, M., Nichterlein, A., Sikora, F.: Parametrized approximability of maximizing the spread of influence in networks. J. Discrete Algorithms 27, 54–65 (2014)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Ben-Zwi, O., Hermelin, D., Lokshtanov, D., Newman, I.: Treewidth governs the complexity of target set selection. Discrete Optim. 8, 87–96 (2011)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Chen, N.: On the approximability of influence in social networks. SIAM J. Discrete Math. 23, 1400–1415 (2009)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Chen, W., Lakshmanan, L.V.S., Castillo, C.: Information and Influence Propagation in Social Networks. Morgan & Claypool, San Rafael (2013)Google Scholar
  7. 7.
    Centeno, C.C., Dourado, M.C., Draque Penso, L., Rautenbach, D., Szwarcfiter, J.L.: Irreversible conversion of graphs. Theor. Comput. Sci. 412(29), 3693–3700 (2011)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Chopin, M., Nichterlein, A., Niedermeier, R., Weller, M.: Constant thresholds can make target set selection tractable. Theor. Comput. Syst. 55, 61–83 (2014)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Chiang, C.-Y., Huang, L.-H., Li, B.-J., Wu, J., Yeh, H.-G.: Some results on the target set selection problem. J. Comb. Optim. 25, 702–715 (2013)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Cicalese, F., Cordasco, G., Gargano, L., Milanič, M., Vaccaro, U.: Latency-bounded target set selection in social networks. Theor. Comput. Sci. 535, 1–15 (2014)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Cicalese, F., Cordasco, G., Gargano, L., Milanič, M., Peters, J.G., Vaccaro, U.: Spread of influence in weighted networks under time and budget constraints. Theor. Comput. Sci. 586, 40–58 (2015)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Coja-Oghlan, A., Feige, U., Krivelevich, M., Reichman, D.: Contagious sets in expanders. In: Proceedings of SODA 2015, pp. 1953–1987 (2015)Google Scholar
  13. 13.
    Cordasco, G., Gargano, L., Mecchia, M., Rescigno, A.A., Vaccaro, U.: A fast and effective heuristic for discovering small target sets in social networks. In: Lu, Z., Kim, D., Wu, W., Li, W., Du, D.-Z. (eds.) Combinatorial Optimization and Applications. LNCS, vol. 9486, pp. 193–208. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  14. 14.
    Dawkins, R.: The Selfish Gene. Oxford University Press, Oxford (1989)Google Scholar
  15. 15.
    Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg (2012)MATHGoogle Scholar
  16. 16.
    Easley, D., Kleinberg, J.: Networks, Crowds, and Markets: Reasoning About a Highly Connected World. Cambridge University Press, New York (2010)CrossRefMATHGoogle Scholar
  17. 17.
    Fiala, J., Gavenciak, T., Knop, D., Koutecky, M., Kratochvíl, J.: Fixed parameter complexity of distance constrained labeling and uniform channel assignment problems (2015). arXiv:1507.00640
  18. 18.
    Freund, D., Poloczek, M., Reichman, D.: Contagious sets in dense graphs. In: Lipták, Z. (ed.) IWOCA 2015. LNCS, vol. 9538, pp. 185–196. Springer, Heidelberg (2016). doi:10.1007/978-3-319-29516-9_16 CrossRefGoogle Scholar
  19. 19.
    R. Ganian,Using neighborhood diversity to solve hard problems (2012). arXiv:1201.3091
  20. 20.
    Gargano, L., Rescigno, A.A.: Complexity of conflict-free colorings of graphs. Theor. Comput. Sci. 566, 39–49 (2015)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Gargano, L., Hell, P., Peters, J.G., Vaccaro, U.: Influence diffusion in social networks under time window constraints. Theor. Comput. Sci. 584, 53–66 (2015)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Kawasaki, G.: Selling the Dream: How to Promote Your Product, Company, or Ideas and Make a Difference Using Everyday Evangelism. HarperCollins, New York (1991)Google Scholar
  23. 23.
    Kempe, D., Kleinberg, J.M., Tardos, E.: Maximizing the Spread of Influence through a Social Network. Theor. Comput. 11, 105–147 (2015)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Lampis, M.: Algorithmic meta-theorems for restrictions of treewidth. Algorithmica 64, 19–37 (2011)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Leppaniemi, M., et al.: Targeting young voters in a political campaign: empirical insights into an interactive digital marketing campaign in the 2007 finnish general election. J. Nonprofit Public Sect. Mark. 22, 14–37 (2010)CrossRefGoogle Scholar
  26. 26.
    McConnell, B., Huba, J.: Creating Customer Evangelists: How Loyal Customers Become a Volunteer Sales Force. Lewis Lane Press, USA (2012)Google Scholar
  27. 27.
    Nichterlein, A., Niedermeier, R., Uhlmann, J., Weller, M.: Tractable cases of target set selection. Soc. Netw. Anal. Min. 3, 1–24 (2012)MATHGoogle Scholar
  28. 28.
    Reddy, T.V.T., Rangan, C.P.: Variants of spreading messages. J. Graph Algorithms Appl. 15(5), 683–699 (2011)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Tumulty, K.: Obama’s Viral Marketing Campaign. TIME Magazine, July 5 2007Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Gennaro Cordasco
    • 2
  • Luisa Gargano
    • 1
  • Adele A. Rescigno
    • 1
  • Ugo Vaccaro
    • 1
  1. 1.Department of InformaticsUniversity of SalernoFiscianoItaly
  2. 2.Department of PsychologySecond University of NaplesCasertaItaly

Personalised recommendations