Well-Quasi-Ordering versus Clique-Width: New Results on Bigenic Classes

  • Konrad K. Dabrowski
  • Vadim V. Lozin
  • Daniël Paulusma
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9843)

Abstract

Daligault, Rao and Thomassé conjectured that if a hereditary class of graphs is well-quasi-ordered by the induced subgraph relation then it has bounded clique-width. Lozin, Razgon and Zamaraev recently showed that this conjecture is not true for infinitely defined classes. For finitely defined classes the conjecture is still open. It is known to hold for classes of graphs defined by a single forbidden induced subgraph H, as such graphs are well-quasi-ordered and are of bounded clique-width if and only if H is an induced subgraph of \(P_4\). For bigenic classes of graphs i.e. ones defined by two forbidden induced subgraphs there are several open cases in both classifications. We reduce the number of open cases for well-quasi-orderability of such classes from 12 to 9. Our results agree with the conjecture and imply that there are only two remaining cases to verify for bigenic classes.

References

  1. 1.
    Atminas, A., Lozin, V.V.: Labelled induced subgraphs and well-quasi-ordering. Order 32(3), 313–328 (2015)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small treewidth. SIAM J. Comput. 25(6), 1305–1317 (1996)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Brandstädt, A., Kratsch, D.: On the structure of (\(P_5\), gem)-free graphs. Discrete Appl. Math. 145(2), 155–166 (2005)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Brandstädt, A., Le, H.-O., Mosca, R.: Gem- and co-gem-free graphs have bounded clique-width. Int. J. Found. Comput. Sci. 15(1), 163–185 (2004)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Brandstädt, A., Le, H.-O., Mosca, R.: Chordal co-gem-free and (\(P_5\), gem)-free graphs have bounded clique-width. Discrete Appl. Math. 145(2), 232–241 (2005)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Courcelle, B.: The monadic second-order logic of graphs III: tree-decompositions, minor and complexity issues. Informatique Thorique et Appl. 26, 257–286 (1992)MathSciNetMATHGoogle Scholar
  7. 7.
    Courcelle, B.: Clique-width and edge contraction. Inf. Process. Lett. 114(1–2), 42–44 (2014)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Courcelle, B., Makowsky, J.A., Rotics, U.: Linear time solvable optimization problems on graphs of bounded clique-width. Theory Comput. Syst. 33(2), 125–150 (2000)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Courcelle, B., Olariu, S.: Upper bounds to the clique width of graphs. Discrete Appl. Math. 101(1–3), 77–114 (2000)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Dabrowski, K.K., Dross, F., Paulusma, D.: Colouring diamond-free graphs. In: Pagh, R. (ed.) SWAT 2016. LIPIcs, vol 53, pp. 16:1–16:14. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Dagstuhl (2016)Google Scholar
  11. 11.
    Dabrowski, K.K., Huang, S., Paulusma, D.: Bounding clique-width via perfect graphs. J. Comput. Syst. Sci. (2016, in press). doi:10.1016/j.jcss.2016.06.007
  12. 12.
    Dabrowski, K.K., Paulusma, D.: Clique-width of graph classes defined by two forbidden induced subgraphs. Comput. J. 59(5), 650–666 (2016)CrossRefGoogle Scholar
  13. 13.
    Daligault, J., Rao, M., Thomassé, S.: Well-quasi-order of relabel functions. Order 27(3), 301–315 (2010)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Damaschke, P.: Induced subgraphs and well-quasi-ordering. J. Graph Theory 14(4), 427–435 (1990)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Espelage, W., Gurski, F., Wanke, E.: How to solve NP-hard graph problems on clique-width bounded graphs in polynomial time. In: Brandstädt, A., Le, V.B. (eds.) WG 2001. LNCS, vol. 2204, pp. 117–128. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  16. 16.
    Finkel, A., Schnoebelen, P.: Well-structured transition systems everywhere!. Theoret. Comput. Sci. 256(1–2), 63–92 (2001)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Higman, G.: Ordering by divisibility in abstract algebras. Proc. Lond. Math. Soc. s3–2(1), 326–336 (1952)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Kobler, D., Rotics, U.: Edge dominating set and colorings on graphs with fixed clique-width. Discrete Appl. Math. 126(2–3), 197–221 (2003)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Korpelainen, N., Lozin, V.V.: Two forbidden induced subgraphs and well-quasi-ordering. Discrete Math. 311(16), 1813–1822 (2011)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Kruskal, J.B.: The theory of well-quasi-ordering: a frequently discovered concept. J. Comb. Theory Ser. A 13(3), 297–305 (1972)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Lozin, V.V., Razgon, I., Zamaraev, V.: Well-quasi-ordering does not imply bounded clique-width. In: Proceedings of WG 2015. LNCS, vol. 9224 (2015, to appear)Google Scholar
  22. 22.
    Oum, S.-I., Seymour, P.D.: Approximating clique-width and branch-width. J. Comb. Theory Ser. B 96(4), 514–528 (2006)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Rao, M.: MSOL partitioning problems on graphs of bounded treewidth and clique-width. Theoret. Comput. Sci. 377(1–3), 260–267 (2007)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Robertson, N., Seymour, P.: Graph minors. IV. tree-width and well-quasi-ordering. J. Comb. Theory Ser. B 48(2), 227–254 (1990)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Robertson, N., Seymour, P.: Graph minors. XX. Wagner’s conjecture. J. Comb. Theory Ser. B 92(2), 325–357 (2004)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Konrad K. Dabrowski
    • 1
  • Vadim V. Lozin
    • 2
  • Daniël Paulusma
    • 1
  1. 1.School of Engineering and Computing SciencesDurham University, Science LaboratoriesDurhamUK
  2. 2.Mathematics InstituteUniversity of WarwickCoventryUK

Personalised recommendations