Weighted Online Problems with Advice

  • Joan Boyar
  • Lene M. Favrholdt
  • Christian Kudahl
  • Jesper W. Mikkelsen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9843)

Abstract

Recently, the first online complexity class, \(\mathsf {AOC}\), was introduced. The class consists of many online problems where each request must be either accepted or rejected, and the aim is to either minimize or maximize the number of accepted requests, while maintaining a feasible solution. All \(\mathsf {AOC}\)-complete problems (including Independent Set, Vertex Cover, Dominating Set, and Set Cover) have essentially the same advice complexity. In this paper, we study weighted versions of problems in \(\mathsf {AOC}\), i.e., each request comes with a weight and the aim is to either minimize or maximize the total weight of the accepted requests. In contrast to the unweighted versions, we show that there is a significant difference in the advice complexity of complete minimization and maximization problems. We also show that our algorithmic techniques for dealing with weighted requests can be extended to work for non-complete \(\mathsf {AOC}\) problems such as Matching (giving better results than what follow from the general \(\mathsf {AOC}\) results) and even non-\(\mathsf {AOC}\) problems such as scheduling.

References

  1. 1.
    Albers, S., Hellwig, M.: Online makespan minimization with parallel schedules. In: Ravi, R., Gørtz, I.L. (eds.) SWAT 2014. LNCS, vol. 8503, pp. 13–25. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  2. 2.
    Böckenhauer, H.-J., Hromkovič, J., Komm, D., Krug, S., Smula, J., Sprock, A.: The string guessing problem as a method to prove lower bounds on the advice complexity. Theor. Comput. Sci. 554, 95–108 (2014)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Böckenhauer, H.-J., Komm, D., Královič, R., Královič, R., Mömke, T.: On the advice complexity of online problems. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009. LNCS, vol. 5878, pp. 331–340. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  4. 4.
    Boyar, J., Epstein, L., Favrholdt, L.M., Larsen, K.S., Levin, A.: Online bounded analysis. In: Kulikov, A.S., Woeginger, G.J. (eds.) CSR 2016. LNCS, vol. 9691, pp. 131–145. Springer, Heidelberg (2016). doi:10.1007/978-3-319-34171-2_10 CrossRefGoogle Scholar
  5. 5.
    Boyar, J., Favrholdt, L.M., Kudahl, C., Mikkelsen, J.W.: Advice complexity for a class of online problems. In: STACS, vol. 30 of LIPIcs, pp. 116–129 (2015)Google Scholar
  6. 6.
    Boyar, J., Favrholdt, L.M., Kudahl, C., Mikkelsen, J.W.: Weighted online problems with advice (2016). http://arxiv.org/abs/1606.05210
  7. 7.
    Dobrev, S., Královič, R., Pardubská, D.: Measuring the problem-relevant information in input. RAIRO Theor. Inf. Appl. 43(3), 585–613 (2009)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Dürr, C., Konrad, C., Renault, M.P.: On the power of advice and randomization for online bipartite matching. In: ESA, 2016 to appearGoogle Scholar
  9. 9.
    Emek, Y., Fraigniaud, P., Korman, A., Rosén, A.: Online computation with advice. Theor. Comput. Sci. 412(24), 2642–2656 (2011)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Karlin, A.R., Manasse, M.S., Rudolph, L., Sleator, D.D.: Competitive snoopy caching. Algorithmica 3, 77–119 (1988)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Komm, D., Královič, R., Královič, R., Kudahl, C.: Advice complexity of the online induced subgraph problem. In: MFCS, 2016 to appearGoogle Scholar
  12. 12.
    Mikkelsen, J.W.: Randomization can be as helpful as a glimpse of the future in online computation. In: ICALP, 2016 to appearGoogle Scholar
  13. 13.
    Renault, M.P., Rosén, A., van Stee, R.: Online algorithms with advice for bin packing and scheduling problems. Theor. Comput. Sci. 600, 155–170 (2015)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Sleator, D.D., Tarjan, R.E.: Amortized efficiency of list update and paging rules. Commun. ACM 28(2), 202–208 (1985)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Smula, J.: Information Content of Online Problems: Advice versus Determinism and Randomization. Ph.D. thesis, ETH, Zürich (2015)Google Scholar
  16. 16.
    Sprock, A.: Analysis of hard problems in reoptimization and online computation. Ph.D. thesis, ETH, Zürich (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Joan Boyar
    • 1
  • Lene M. Favrholdt
    • 1
  • Christian Kudahl
    • 1
  • Jesper W. Mikkelsen
    • 1
  1. 1.Department of Mathematics and Computer ScienceUniversity of Southern DenmarkOdenseDenmark

Personalised recommendations