Reconfiguration of Steiner Trees in an Unweighted Graph

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9843)

Abstract

We study a reconfiguration problem for Steiner trees in an unweighted graph, which determines whether there exists a sequence of Steiner trees that transforms a given Steiner tree into another one by exchanging a single edge at a time. In this paper, we show that the problem is PSPACE-complete even for split graphs (and hence for chordal graphs), while solvable in linear time for interval graphs.

References

  1. 1.
    Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph Classes: A Survey, SIAM (1999)Google Scholar
  2. 2.
    Demaine, E.D., Demaine, M.L., Fox-Epstein, E., Hoang, D.A., Ito, T., Ono, H., Otachi, Y., Uehara, R., Yamada, T.: Linear-time algorithm for sliding tokens on trees. Theor. Comput. Sci. 600, 132–142 (2015)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, San Francisco (1979)MATHGoogle Scholar
  4. 4.
    Gopalan, P., Kolaitis, P.G., Maneva, E.N., Papadimitriou, C.H.: The connectivity of Boolean satisfiability: computational and structural dichotomies. SIAM J. Comput. 38, 2330–2355 (2009)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    van den Heuvel, J.: The complexity of change. Surveys in Combinatorics 2013, London Mathematical Society Lecture Notes Series 409 (2013)Google Scholar
  6. 6.
    Ito, T., Demaine, E.D., Harvey, N.J.A., Papadimitriou, C.H., Sideri, M., Uehara, R., Uno, Y.: On the complexity of reconfiguration problems. Theor. Comput. Sci. 412, 1054–1065 (2011)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Ito, T., Nooka, H., Zhou, X.: Reconfiguration of vertex covers in a graph. IEICE Trans. Inf. Syst. E99–D, 598–606 (2016)CrossRefMATHGoogle Scholar
  8. 8.
    Ito, T., Ono, H., Otachi, Y.: Reconfiguration of cliques in a graph. In: Jain, R., Jain, S., Stephan, F. (eds.) TAMC 2015. LNCS, vol. 9076, pp. 212–223. Springer, Heidelberg (2015)Google Scholar
  9. 9.
    Kamiński, M., Medvedev, P., Milanič, M.: Complexity of independent set reconfigurability problems. Theor. Comput. Sci. 439, 9–15 (2012)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Korte, N., Möhring, R.: An incremental linear-time algorithm for recognizing interval graphs. SIAM J. Comput. 18, 68–81 (1989)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Mouawad, A.E., Nishimura, N., Pathak, V., Raman, V.: Shortest reconfiguration paths in the solution space of boolean formulas. In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP 2015. LNCS, vol. 9134, pp. 985–996. Springer, Heidelberg (2015)Google Scholar
  12. 12.
    Mouawad, A.E., Nishimura, N., Raman, V.: Vertex cover reconfiguration and beyond. In: Ahn, H.-K., Shin, C.-S. (eds.) ISAAC 2014. LNCS, vol. 8889, pp. 452–463. Springer, Heidelberg (2014)Google Scholar
  13. 13.
    Savitch, W.J.: Relationships between nondeterministic and deterministic tape complexities. J. Comput. Syst. Sci. 4, 177–192 (1970)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    van der Zanden, T.C.: Parameterized complexity of graph constraint logic. In: Proceedings of IPEC 2015, LIPIcs 43, pp. 282–293 (2015)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Graduate School of Information SciencesTohoku UniversitySendaiJapan
  2. 2.JST, ERATO, Kawarabayashi Large Graph ProjectTokyoJapan
  3. 3.CREST, JST, 4-1-8 HonchoKawaguchiJapan

Personalised recommendations