On the Complexity of Computing Treebreadth

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9843)


During the last decade, metric properties of the bags of tree-decompositions of graphs have been studied. Roughly, the length and the breadth of a tree-decomposition are the maximum diameter and radius of its bags respectively. The treelength and the treebreadth of a graph are the minimum length and breadth of its tree-decompositions respectively. Pathlength and pathbreadth are defined similarly for path-decompositions. In this paper, we answer open questions of [Dragan and Köhler, Algorithmica 2014] and [Dragan, Köhler and Leitert, SWAT 2014] about the computational complexity of treebreadth, pathbreadth and pathlength. Namely, we prove that computing these graph invariants is NP-hard. We further investigate graphs with treebreadth one, i.e., graphs that admit a tree-decomposition where each bag has a dominating vertex. We show that it is NP-complete to decide whether a graph belongs to this class. We then prove some structural properties of such graphs which allows us to design polynomial-time algorithms to decide whether a bipartite graph, resp., a planar graph, has treebreadth one.


  1. 1.
    Abu-Ata, M., Dragan, F.: Metric tree-like structures in real-world networks: an empirical study. Networks 67, 49–68 (2016)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Arnborg, S., Corneil, D., Proskurowski, A.: Complexity of finding embeddings in a \(k\)-tree. SIAM J. Algebraic Discrete Methods 8(2), 277–284 (1987)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Berry, A., Pogorelcnik, R., Simonet, G.: An introduction to clique minimal separator decomposition. Algorithms 3(2), 197–215 (2010)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bodlaender, H.: Treewidth: Characterizations, applications, and computations (2006)Google Scholar
  5. 5.
    Bodlaender, H.: A linear-time algorithm for finding tree-decompositions of small treewidth. SIAM J. Comput. 25(6), 1305–1317 (1996)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Bodlaender, H., Fellows, M., Warnow, T.: Two strikes against perfect phylogeny. In: ICALP 1992, Vienna, Austria, pp. 273–283 (1992)Google Scholar
  7. 7.
    Brandstädt, A., Dragan, F., Chepoi, V., Voloshin, V.: Dually chordal graphs. SIAM J. Discrete Math. 11(3), 437–455 (1998)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Chechik, S., Larkin, D., Roditty, L., Schoenebeck, G., Tarjan, R., Williams, V.V.: Better approximation algorithms for the graph diameter. In: ACM SODA 2014, pp. 1041–1052. SIAM (2014)Google Scholar
  9. 9.
    Chepoi, V., Dragan, F., Estellon, B., Habib, M., Vaxès, Y.: Diameters, centers, and approximating trees of \(\delta \)-hyperbolic geodesic spaces and graphs. In: SCG 2008, New York, NY, USA, pp. 59–68. ACM (2008)Google Scholar
  10. 10.
    Coudert, D., Ducoffe, G., Nisse, N.: To approximate treewidth, use treelength! SIAM J. Discrete Math. (to appear, 2016)Google Scholar
  11. 11.
    de Montgolfier, F., Soto, M., Viennot, L.: Treewidth and hyperbolicity of the internet. In: 2011 10th IEEE International Symposium on Network Computing and Applications (NCA), pp. 25–32, August 2011Google Scholar
  12. 12.
    Dourisboure, Y., Dragan, F., Gavoille, C., Chenyu, Y.: Spanners for bounded tree-length graphs. Theor. Comput. Sci. 383(1), 34–44 (2007)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Dourisboure, Y., Gavoille, C.: Tree-decompositions with bags of small diameter. Discrete Math. 307(16), 2008–2029 (2007)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Dragan, F., Köhler, E.: An approximation algorithm for the tree t-spanner problem on unweighted graphs via generalized chordal graphs. Algorithmica 69(4), 884–905 (2014)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Dragan, F.F., Köhler, E., Leitert, A.: Line-distortion, bandwidth and path-length of a graph. In: Ravi, R., Gørtz, I.L. (eds.) SWAT 2014. LNCS, vol. 8503, pp. 158–169. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  16. 16.
    Dragan, F.F., Leitert, A.: On the minimum eccentricity shortest path problem. In: Dehne, F., Sack, J.-R., Stege, U. (eds.) WADS 2015. LNCS, vol. 9214, pp. 276–288. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  17. 17.
    Ducoffe, G., Legay, S., Nisse, N.: On computing tree and path decompositions with metric constraints on the bags. Technical Report RR-8842 (2016)Google Scholar
  18. 18.
    Krauthgamer, R., Lee, J.: Algorithms on negatively curved spaces. In: FOCS 2006, pp. 119–132. IEEE (2006)Google Scholar
  19. 19.
    Lokshtanov, D.: On the complexity of computing treelength. Discrete Appl. Math. 158(7), 820–827 (2010)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Robertson, N., Seymour, P.: Graph minors. II: algorithmic aspects of tree-width. J. Algorithms 7(3), 309–322 (1986)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Wang, C., Liu, T., Jiang, W., Xu, K.: Feedback vertex sets on tree convex bipartite graphs. In: Lin, G. (ed.) COCOA 2012. LNCS, vol. 7402, pp. 95–102. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  22. 22.
    Wu, Y., Austrin, P., Pitassi, T., Liu, D.: Inapproximability of treewidth and related problems. J. Artif. Intell. Res. (JAIR) 49, 569–600 (2014)MathSciNetMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Guillaume Ducoffe
    • 1
    • 2
  • Sylvain Legay
    • 3
  • Nicolas Nisse
    • 1
    • 2
  1. 1.Univ. Nice Sophia Antipolis, CNRS, I3S, UMR 7271Sophia AntipolisFrance
  2. 2.InriaSophia AntipolisFrance
  3. 3.LRI, Univ. Paris Sud, Université Paris-SaclayOrsayFrance

Personalised recommendations