Random Simplicial Complexes: Around the Phase Transition



This article surveys some of the work done in recent years on random simplicial complexes. We mostly consider higher-dimensional analogs of the well known phase transition in G(n, p) theory that occurs at \(p = \frac{1} {n}\). Our main objective is to provide a more streamlined and unified perspective of some of the papers in this area.


  1. 1.
    D. Aldous, The ζ(2) limit in the random assignment problem. Random Struct. Algorithms 18(4), 381–418 (2001)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    D. Aldous, R. Lyons, Processes on unimodular random networks. Electron. J. Probab 12(54), 1454–1508 (2007)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    D. Aldous, M. Steele, The objective method: probabilistic combinatorial optimization and local weak convergence, in Probability on Discrete Structures, ed. by H. Kesten (Springer, Berlin, 2004), pp. 1–72Google Scholar
  4. 4.
    L. Aronshtam, N. Linial, The threshold for collapsibility in random complexes (2013). arXiv preprint arXiv:1307.2684Google Scholar
  5. 5.
    L. Aronshtam, N. Linial, When does the top homology of a random simplicial complex vanish? Random Struct. Algorithms 46, 26–35 (2013)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    L. Aronshtam, N. Linial, T. Łuczak, R. Meshulam, Collapsibility and vanishing of top homology in random simplicial complexes. Discret. Comput. Geom. 49(2), 317–334 (2013)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    E. Babson, C. Hoffman, M. Kahle, The fundamental group of random 2-complexes. J. Am. Math. Soc. 24(1), 1–28 (2011)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    I. Benjamini, O. Schramm, Recurrence of distributional limits of finite planar graphs, in Selected Works of Oded Schramm, ed. by I. Benjamini, O. Häggström (Springer, New York, 2011), pp. 533–545CrossRefGoogle Scholar
  9. 9.
    C. Bordenave, M. Lelarge, J. Salez, The rank of diluted random graphs. Ann. Probab. 39(3), 1097–1121 (2011)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    C. Hoffman, M. Kahle, E. Paquette, The threshold for integer homology in random d-complexes (2013). arXiv preprint arXiv:1308.6232Google Scholar
  11. 11.
    D. Korándi, Y. Peled, B. Sudakov, A random triadic process. SIAM J. Discret. Math. 30(1), 1–19 (2016)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    N. Linial, R. Meshulam, Homological connectivity of random 2-complexes. Combinatorica 26(4), 475–487 (2006)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    N. Linial, Y. Peled, On the phase transition in random simplicial complexes. Ann. Math. 184, 745–773 (2016)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    N. Linial, I. Newman, Y. Peled, Y. Rabinovich, Extremal problems on shadows and hypercuts in simplicial complexes (2014). arXiv preprint arXiv:1408.0602Google Scholar
  15. 15.
    T. Łuczak, Y. Peled, Integral homology of random simplicial complexes (2016). arXiv preprint, arXiv:1607.06985Google Scholar
  16. 16.
    R. Lyons, Asymptotic enumeration of spanning trees. Combin. Probab. Comput. 14(04), 491–522 (2005)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    R. Meshulam, N. Wallach, Homological connectivity of random k-dimensional complexes. Random Struct. Algorithms 34(3), 408–417 (2009)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    M. Molloy, Cores in random hypergraphs and boolean formulas. Random Struct. Algorithms 27(1), 124–135 (2005)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    M. Reed, B. Simon, Methods of Modern Mathematical Physics. I: Functional Analysis, 2nd edn. (Academic Press [Harcourt Brace Jovanovich, Publishers], New York, 1980). MR 0751959. Zbl 0459.46001Google Scholar
  20. 20.
    O. Riordan, The k-core and branching processes. Combin. Probab. Comput. 17(1), 111–136 (2008)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International publishing AG 2017

Authors and Affiliations

  1. 1.Department of Computer ScienceHebrew University of JerusalemJerusalemIsrael

Personalised recommendations