Near-Optimal Lower Bounds for ε-Nets for Half-Spaces and Low Complexity Set Systems

  • Andrey Kupavskii
  • Nabil H. Mustafa
  • János Pach


Following groundbreaking work by Haussler and Welzl (1987), the use of small ε-nets has become a standard technique for solving algorithmic and extremal problems in geometry and learning theory. Two significant recent developments are: (i) an upper bound on the size of the smallest ε-nets for set systems, as a function of their so-called shallow-cell complexity (Chan, Grant, Könemann, and Sharpe); and (ii) the construction of a set system whose members can be obtained by intersecting a point set in \(\mathbb{R}^{4}\) by a family of half-spaces such that the size of any ε-net for them is \(\Omega (\frac{1} {\epsilon } \log \frac{1} {\epsilon } )\) (Pach and Tardos).

The present paper completes both of these avenues of research. We (i) give a lower bound, matching the result of Chan et al., and (ii) generalize the construction of Pach and Tardos to half-spaces in \(\mathbb{R}^{d},\) for any d ≥ 4, to show that the general upper bound, \(O(\frac{d} {\epsilon } \log \frac{1} {\epsilon } )\), of Haussler and Welzl for the size of the smallest ε-nets is tight.



We thank the anonymous referees for carefully reading our manuscript and for pointing out several problems in the presentation, including a mistake in the proof of Lemma 10. A preliminary version of this paper was accepted in SoCG 2016 (Symposium on Computational Geometry). We also thank the anonymous reviewers of the conference version for their feedback and valuable suggestions.


  1. 1.
    P.K. Agarwal, J. Pach, M. Sharir, State of the union (of geometric objects): a review, in Computational Geometry: Twenty Years Later, ed. by J. Goodman, J. Pach, R. Pollack (American Mathematical Society, 2008), pp. 9–48Google Scholar
  2. 2.
    N. Alon, A non-linear lower bound for planar epsilon-nets. Discrete Comput. Geom. 47(2), 235–244 (2012)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    B. Aronov, E. Ezra, M. Sharir, Small-size ε-nets for axis-parallel rectangles and boxes. SIAM J. Comput. 39(7), 3248–3282 (2010)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    P. Ashok, U. Azmi, S. Govindarajan, Small strong epsilon nets. Comput. Geom. 47(9), 899–909 (2014)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    N. Bus, S. Garg, N.H. Mustafa, S. Ray, Tighter estimates for epsilon-nets for disks. Comput. Geom. 53, 27–35 (2016)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    T.M. Chan, E. Grant, J. Könemann, M. Sharpe, Weighted capacitated, priority, and geometric set cover via improved quasi-uniform sampling, in Proceedings of Symposium on Discrete Algorithms (SODA) (2012), pp. 1576–1585Google Scholar
  7. 7.
    B. Chazelle, J. Friedman, A deterministic view of random sampling and its use in geometry. Combinatorica 10(3), 229–249 (1990)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    K.L. Clarkson, P.W. Shor, Application of random sampling in computational geometry, II. Discrete Comput. Geom. 4, 387–421 (1989)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    K. Clarkson, K. Varadarajan, Improved approximation algorithms for geometric set cover. Discrete Comput. Geom. 37, 43–58 (2007)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    D. Haussler, E. Welzl, Epsilon-nets and simplex range queries. Discrete Comput. Geom. 2, 127–151 (1987)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    J. Komlós, J. Pach, G.J. Woeginger, Almost tight bounds for epsilon-nets. Discrete Comput. Geom. 7, 163–173 (1992)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    J. Matoušek, On constants for cuttings in the plane. Discrete Comput. Geom. 20(4), 427–448 (1998)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    J. Matoušek, Lectures in Discrete Geometry (Springer, New York, 2002)CrossRefMATHGoogle Scholar
  14. 14.
    J. Matoušek, R. Seidel, E. Welzl, How to net a lot with little: small epsilon-nets for disks and halfspaces, in Proceedings of Symposium on Computational Geometry (1990), pp. 16–22Google Scholar
  15. 15.
    N.H. Mustafa, S. Ray, Near-optimal generalisations of a theorem of Macbeath, in Proceedings of the Symposium on Theoretical Aspects of Computer Science (STACS) (2014), pp. 578–589Google Scholar
  16. 16.
    N.H. Mustafa, K. Varadarajan, Epsilon-approximations and epsilon-nets, in Handbook of Discrete and Computational Geometry, ed. by J.E. Goodman, J. O’Rourke, C.D. Tóth (CRC Press LLC, 2016, to appear)Google Scholar
  17. 17.
    N.H. Mustafa, K. Dutta, A. Ghosh, A simple proof of optimal epsilon-nets. Combinatorica (to appear)Google Scholar
  18. 18.
    J. Pach, P.K. Agarwal, Combinatorial Geometry (Wiley, New York, 1995)CrossRefMATHGoogle Scholar
  19. 19.
    J. Pach, G. Tardos, Tight lower bounds for the size of epsilon-nets. J. AMS 26, 645–658 (2013)MathSciNetMATHGoogle Scholar
  20. 20.
    E. Pyrga, S. Ray, New existence proofs for epsilon-nets, in Proceedings of the Symposium on Computational Geometry (SoCG) (2008), pp. 199–207Google Scholar
  21. 21.
    N. Sauer, On the density of families of sets. J. Combin. Theory Ser. A 13, 145–147 (1972)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    M. Sharir, On k-sets in arrangement of curves and surfaces. Discrete Comput. Geom. 6, 593–613 (1991)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    S. Shelah, A combinatorial problem; stability and order for models and theories in infinitary languages. Pac. J. Math. 41, 247–261 (1972)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    V.N. Vapnik, A.Ya. Chervonenkis, On the uniform convergence of relative frequencies of events to their probabilities. Theory Probab. Appl. 16(2), 264–280 (1971)Google Scholar
  25. 25.
    K. Varadarajan, Epsilon nets and union complexity, in Proceedings of the Symposium on Computational Geometry (SoCG) (2009), pp. 11–16Google Scholar
  26. 26.
    K. Varadarajan, Weighted geometric set cover via quasi uniform sampling, in Proceedings of the Symposium on Theory of Computing (STOC) (ACM, New York, 2010), pp. 641–648MATHGoogle Scholar

Copyright information

© Springer International publishing AG 2017

Authors and Affiliations

  • Andrey Kupavskii
    • 1
    • 2
  • Nabil H. Mustafa
    • 3
  • János Pach
    • 2
    • 4
  1. 1.Moscow Institute of Physics and TechnologyDolgoprudnyRussia
  2. 2.EPFLLausanneSwitzerland
  3. 3.LIGM, Equipe A3SI, ESIEE ParisUniversité Paris-EstChamps-sur-MarneFrance
  4. 4.Rényi InstituteBudapestHungary

Personalised recommendations