Approximating the k-Level in Three-Dimensional Plane Arrangements



Let H be a set of n non-vertical planes in three dimensions, and let r < n be a parameter. We give a construction that approximates the (nr)-level of the arrangement \(\mathcal{A}(H)\) of H by a terrain consisting of O(rɛ3) triangular faces, which lies entirely between the levels nr and (1 + ɛ)nr. The proof does not use sampling, and exploits techniques based on planar separators and various structural properties of levels in three-dimensional arrangements and of planar maps. This leads to conceptually cleaner constructions of shallow cuttings in three dimensions.

On the way, we get two other results that are of independent interest: (a) We revisit an old result of Bambah and Rogers (J Lond Math Soc 1(3):304–314, 1952) about triangulating a union of convex pseudo-disks, and provide an alternative proof that yields an efficient algorithmic implementation. (b) We provide a new construction of cuttings in two dimensions.



We thank János Pach for pointing out that a variant of Theorem 2.3 is already known. We also thank the anonymous referees for their useful feedback.


  1. 1.
    P. Afshani, T.M. Chan, Optimal halfspace range reporting in three dimensions, in Proceedings of the 20th ACM-SIAM Symposium on Discrete Algorithms (SODA) (2009), pp. 180–186Google Scholar
  2. 2.
    P. Afshani, K. Tsakalidis, Optimal deterministic shallow cuttings for 3d dominance ranges, in Proceedings of the 25th ACM-SIAM Symposium on Discrete Algorithms (SODA) (2014), pp. 1389–1398Google Scholar
  3. 3.
    P. Afshani, C.H. Hamilton, N. Zeh, A general approach for cache-oblivious range reporting and approximate range counting. Comput. Geom. Theory Appl. 43(8), 700–712 (2010)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    P. Afshani, T.M. Chan, K. Tsakalidis, Deterministic rectangle enclosure and offline dominance reporting on the RAM, in Proceedings of the 41st International Colloquium on Automata, Languages and Programming (ICALP). Volume 8572 of Lecture Notes in Computer Science (Springer, 2014), pp. 77–88Google Scholar
  5. 5.
    P.K. Agarwal, Partitioning arrangements of lines I: an efficient deterministic algorithm. Discrete Comput. Geom. 5, 449–483 (1990)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    P.K. Agarwal, Partitioning arrangements of lines: II. Applications. Discrete Comput. Geom. 5, 533–573 (1990)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    P.K. Agarwal, Geometric partitioning and its applications, in Computational Geometry: Papers from the DIMACS Special Year, ed. by J.E. Goodman, R. Pollack, W. Steiger (American Mathematical Society, Providence, 1991), pp. 1–37Google Scholar
  8. 8.
    P.K. Agarwal, Intersection and Decomposition Algorithms for Planar Arrangements (Cambridge University Press, New York, 1991)MATHGoogle Scholar
  9. 9.
    P.K. Agarwal, P.K. Desikan, An efficient algorithm for terrain simplification, in Proceedings of the 8th ACM-SIAM Symposium on Discrete Algorithms (SODA) (1997), pp. 139–147Google Scholar
  10. 10.
    P.K. Agarwal, J. Erickson, Geometric range searching and its relatives, in Advances in Discrete and Computational Geometry, ed. by B. Chazelle, J.E. Goodman, R. Pollack (American Mathematical Society, Providence, 1999), pp. 1–56Google Scholar
  11. 11.
    P.K. Agarwal, J. Matoušek, Dynamic half-space range reporting and its applications. Algorithmica 13, 325–345 (1995)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    P.K. Agarwal, S. Suri, Surface approximation and geometric partitions. SIAM J. Comput. 27(4), 1016–1035 (1998)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    P.K. Agarwal, B. Aronov, T.M. Chan, M. Sharir, On levels in arrangements of lines, segments, planes, and triangles. Discrete Comput. Geom. 19, 315–331 (1998)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    B. Aronov, M. de Berg, E. Ezra, M. Sharir, Improved bounds for the union of locally fat objects in the plane. SIAM J. Comput. 43(2), 543–572 (2014)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    R.P. Bambah, C.A. Rogers, Covering the plane with convex sets. J. Lond. Math. Soc. 1(3), 304–314 (1952)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    T.M. Chan, Random sampling, halfspace range reporting, and construction of ( ≤ k)-levels in three dimensions. SIAM J. Comput. 30(2), 561–575 (2000)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    T.M. Chan, Low-dimensional linear programming with violations. SIAM J. Comput. 34(4), 879–893 (2005)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    T.M. Chan, A dynamic data structure for 3-d convex hulls and 2-d nearest neighbor queries. J. Assoc. Comput. Mach. 57(3), 1–15 (2010). Art. 16Google Scholar
  19. 19.
    T.M. Chan, K. Tsakalidis, Optimal deterministic algorithms for 2-d and 3-d shallow cuttings, in Proceedings of the 31st International Annual Symposium on Computational Geometry (SoCG) (2015), pp. 719–732Google Scholar
  20. 20.
    B. Chazelle, Cutting hyperplanes for divide-and-conquer. Discrete Comput. Geom. 9(2), 145–158 (1993)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    B. Chazelle, Cuttings (chapter 25), in Handbook of Data Structures and Applications, ed. by D.P. Mehta, S. Sahni (Chapman and Hall/CRC, Boca Raton, 2004)Google Scholar
  22. 22.
    B. Chazelle, J. Friedman, A deterministic view of random sampling and its use in geometry. Combinatorica 10(3), 229–249 (1990)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    B. Chazelle, H. Edelsbrunner, L.J. Guibas, M. Sharir, A singly-exponential stratification scheme for real semi-algebraic varieties and its applications. Theoret. Comput. Sci. 84, 77–105 (1991). Also in Proceedings of the 16th International Colloquium on Automata, Languages and Programming, pp. 179–193Google Scholar
  24. 24.
    K.L. Clarkson, New applications of random sampling in computational geometry. Discrete Comput. Geom. 2, 195–222 (1987)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    K.L. Clarkson, P.W. Shor, Applications of random sampling in computational geometry, II. Discrete Comput. Geom. 4, 387–421 (1989)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    K.L. Clarkson, H. Edelsbrunner, L.J. Guibas, M. Sharir, E. Welzl, Combinatorial complexity bounds for arrangements of curves and spheres. Discrete Comput. Geom. 5, 99–160 (1990)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    E. Ezra, D. Halperin, M. Sharir, Speeding up the incremental construction of the union of geometric objects in practice. Comput. Geom. Theory Appl. 27(1), 63–85 (2004)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    G.N. Frederickson, Fast algorithms for shortest paths in planar graphs, with applications. SIAM J. Comput. 16(6), 1004–1022 (1987)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    S. Har-Peled, Constructing planar cuttings in theory and practice. SIAM J. Comput. 29(6), 2016–2039 (2000)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    S. Har-Peled, M. Sharir, Relative (p, ɛ)-approximations in geometry. Discrete Comput. Geom. 45(3), 462–496 (2011)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    S. Har-Peled, H. Kaplan, M. Sharir, Approximating the k-level in three-dimensional plane arrangements, in Proceedings of the 27th ACM-SIAM Symposium on Discrete Algorithms (SODA) (2016), pp. 1193–1212Google Scholar
  32. 32.
    S. Har-Peled, H. Kaplan, M. Sharir, Approximating the k-level in three-dimensional plane arrangements. CoRR (2016). abs/1601.04755
  33. 33.
    K. Kedem, R. Livne, J. Pach, M. Sharir, On the union of Jordan regions and collision-free translational motion amidst polygonal obstacles. Discrete Comput. Geom. 1, 59–71 (1986)MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    P.N. Klein, S. Mozes, C. Sommer, Structured recursive separator decompositions for planar graphs in linear time, in Proceedings of the 45th Annual ACM Symposium on Theory Computing (STOC) (2013), pp. 505–514Google Scholar
  35. 35.
    V. Koltun, Almost tight upper bounds for vertical decompositions in four dimensions. J. Assoc. Comput. Mach. 51(5), 699–730 (2004)MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    V. Koltun, M. Sharir, Curve-sensitive cuttings. SIAM J. Comput. 34(4), 863–878 (2005)MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    R.J. Lipton, R.E. Tarjan, A separator theorem for planar graphs. SIAM J. Appl. Math. 36, 177–189 (1979)MathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    J. Matoušek, Construction of ɛ-nets. Discrete Comput. Geom. 5, 427–448 (1990)MathSciNetCrossRefMATHGoogle Scholar
  39. 39.
    J. Matoušek, Efficient partition trees. Discrete Comput. Geom. 8, 315–334 (1992)MathSciNetCrossRefMATHGoogle Scholar
  40. 40.
    J. Matoušek, Range searching with efficient hierarchical cutting. Discrete Comput. Geom. 10, 157–182 (1992)MathSciNetCrossRefMATHGoogle Scholar
  41. 41.
    J. Matoušek, Reporting points in halfspaces. Comput. Geom. Theory Appl. 2(3), 169–186 (1992)MathSciNetCrossRefMATHGoogle Scholar
  42. 42.
    J. Matoušek, On constants for cuttings in the plane. Discrete Comput. Geom. 20, 427–448 (1998)MathSciNetCrossRefMATHGoogle Scholar
  43. 43.
    J. Matoušek, N. Miller, J. Pach, M. Sharir, S. Sifrony, E. Welzl, Fat triangles determine linearly many holes, in Proceedings of the 32nd Annual IEEE Symposium on Foundations of Computer Science (FOCS) (1991), pp. 49–58Google Scholar
  44. 44.
    G.L. Miller, Finding small simple cycle separators for 2-connected planar graphs. J. Comput. Syst. Sci. 32(3), 265–279 (1986)MathSciNetCrossRefMATHGoogle Scholar
  45. 45.
    K. Mulmuley, An efficient algorithm for hidden surface removal, II. J. Comput. Syst. Sci. 49, 427–453 (1994)MathSciNetCrossRefMATHGoogle Scholar
  46. 46.
    N.H. Mustafa, R. Raman, S. Ray, Settling the APX-hardness status for geometric set cover, in Proceedings of the 55th Annual IEEE Symposium on Foundations of Computer Science (FOCS) (2014), pp. 541–550Google Scholar
  47. 47.
    J. Pach, P.K. Agarwal, Combinatorial Geometry (Wiley, New York, 1995)CrossRefMATHGoogle Scholar
  48. 48.
    E.A. Ramos, On range reporting, ray shooting and k-level construction, in Proceedings of the 15th Annual Symposium on Computational Geometry (SoCG) (ACM, 1999), pp. 390–399Google Scholar
  49. 49.
    R. Seidel, A simple and fast incremental randomized algorithm for computing trapezoidal decompositions and for triangulating polygons. Comput. Geom. Theory Appl. 1, 51–64 (1991)MathSciNetCrossRefMATHGoogle Scholar
  50. 50.
    M. Sharir, P.K. Agarwal, Davenport-Schinzel Sequences and Their Geometric Applications (Cambridge University Press, New York, 1995)MATHGoogle Scholar

Copyright information

© Springer International publishing AG 2017

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of IllinoisUrbanaUSA
  2. 2.School of Computer ScienceTel Aviv UniversityTel AvivIsrael

Personalised recommendations