Skip to main content

Transport-Entropy Inequalities and Curvature in Discrete-Space Markov Chains

  • Chapter
  • First Online:
A Journey Through Discrete Mathematics

Abstract

Let \(G = (\Omega,E)\) be a graph and let d be the graph distance. Consider a discrete-time Markov chain {Z t } on \(\Omega\) whose kernel p satisfies p(x, y) > 0 ⇒ {x, y} ∈ E for every \(x,y \in \Omega\). In words, transitions only occur between neighboring points of the graph. Suppose further that \((\Omega,p,d)\) has coarse Ricci curvature at least 1∕α in the sense of Ollivier: For all \(x,y \in \Omega\), it holds that \(W_{1}(Z_{1}\mid \{Z_{0} = x\},Z_{1}\mid \{Z_{0} = y\}) \leq \left (1 -\frac{1} {\alpha } \right )d(x,y),\) where W 1 denotes the Wasserstein 1-distance.

In this note, we derive a transport-entropy inequality: For any measure μ on \(\Omega\), it holds that

$$\displaystyle{W_{1}(\mu,\pi ) \leq \sqrt{ \frac{2\alpha } {2 - 1/\alpha }D\!\left (\mu \,\|\,\pi \right )}\,,}$$

where π denotes the stationary measure of {Z t } and \(D\!\left (\cdot \,\|\,\cdot \right )\) is the relative entropy.

Peres and Tetali have conjectured a stronger consequence of coarse Ricci curvature, that a modified log-Sobolev inequality (MLSI) should hold, in analogy with the setting of Markov diffusions. We discuss how our approach suggests a natural attack on the MLSI conjecture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. D. Bakry, I. Gentil, M. Ledoux, Analysis and Geometry of Markov Diffusion Operators. Volume 348 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] (Springer, Cham, 2014)

    Google Scholar 

  2. S.G. Bobkov, F. Götze, Exponential integrability and transportation cost related to logarithmic Sobolev inequalities. J. Funct. Anal. 163(1), 1–28 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. R. Bubley, M.E. Dyer, Path coupling: a technique for proving rapid mixing in markov chains, in 38th Annual Symposium on Foundations of Computer Science, FOCS’97, Miami Beach, 19–22 Oct 1997, pp. 223–231

    Google Scholar 

  4. H. Djellout, A. Guillin, L. Wu, Transportation cost-information inequalities and applications to random dynamical systems and diffusions. Ann. Probab. 32(3B), 2702–2732 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. M. Fathi, Y. Shu, Curvature and transport inequalities for markov chains in discrete spaces (2015, preprint). arXiv:1509.07160

    Google Scholar 

  6. H. Föllmer, An entropy approach to the time reversal of diffusion processes, in Stochastic Differential Systems, Marseille-Luminy, 1984. Volume 69 of Lecture Notes in Control and Information Sciences (Springer, Berlin, 1985), pp. 156–163

    Google Scholar 

  7. H. Föllmer, Time reversal on Wiener space, in Stochastic Processes—Mathematics and Physics, Bielefeld, 1984. Volume 1158 of Lecture Notes in Mathematics (Springer, Berlin, 1986), pp. 119–129

    Google Scholar 

  8. J. Lehec, Representation formula for the entropy and functional inequalities. Ann. Inst. Henri Poincaré Probab. Stat. 49(3), 885–899 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. C. Léonard, A survey of the Schrödinger problem and some of its connections with optimal transport. Discret. Contin. Dyn. Syst. 34(4), 1533–1574 (2014)

    Article  MATH  Google Scholar 

  10. D.A. Levin, Y. Peres, E.L. Wilmer, Markov Chains and Mixing Times (American Mathematical Society, Providence, 2009). With a chapter by J.G. Propp and D.B. Wilson

    Google Scholar 

  11. K. Marton, Bounding \(\overline{d}\)-distance by informational divergence: a method to prove measure concentration. Ann. Probab. 24(2), 857–866 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  12. K. Marton, Logarithmic Sobolev inequalities in discrete product spaces: a proof by a transportation cost distance (2015, Preprint). arXiv:1507.02803

    Google Scholar 

  13. R. Montenegro, P. Tetali, Mathematical aspects of mixing times in Markov chains. Found. Trends Theor. Comput. Sci. 1(3), x+121 (2006)

    Google Scholar 

  14. Y. Ollivier, Ricci curvature of Markov chains on metric spaces. J. Funct. Anal. 256(3), 810–864 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Y. Ollivier, A survey of Ricci curvature for metric spaces and Markov chains, in Probabilistic Approach to Geometry. Volume 57 of Advanced Studies in Pure Mathematics (The Mathematical Society of Japan, Tokyo, 2010), pp. 343–381

    Google Scholar 

  16. M.D. Sammer, Aspects of Mass Transportation in Discrete Concentration Inequalities (ProQuest LLC, Ann Arbor, 2005). Thesis (Ph.D.), Georgia Institute of Technology

    Google Scholar 

  17. C. Villani, Optimal Transport, Old and new. Volume 338 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] (Springer, Berlin, 2009).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James R. Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International publishing AG

About this chapter

Cite this chapter

Eldan, R., Lee, J.R., Lehec, J. (2017). Transport-Entropy Inequalities and Curvature in Discrete-Space Markov Chains. In: Loebl, M., Nešetřil, J., Thomas, R. (eds) A Journey Through Discrete Mathematics. Springer, Cham. https://doi.org/10.1007/978-3-319-44479-6_16

Download citation

Publish with us

Policies and ethics