Transport-Entropy Inequalities and Curvature in Discrete-Space Markov Chains

  • Ronen Eldan
  • James R. Lee
  • Joseph Lehec


Let \(G = (\Omega,E)\) be a graph and let d be the graph distance. Consider a discrete-time Markov chain {Z t } on \(\Omega\) whose kernel p satisfies p(x, y) > 0 ⇒ {x, y} ∈ E for every \(x,y \in \Omega\). In words, transitions only occur between neighboring points of the graph. Suppose further that \((\Omega,p,d)\) has coarse Ricci curvature at least 1∕α in the sense of Ollivier: For all \(x,y \in \Omega\), it holds that \(W_{1}(Z_{1}\mid \{Z_{0} = x\},Z_{1}\mid \{Z_{0} = y\}) \leq \left (1 -\frac{1} {\alpha } \right )d(x,y),\) where W1 denotes the Wasserstein 1-distance.

In this note, we derive a transport-entropy inequality: For any measure μ on \(\Omega\), it holds that
$$\displaystyle{W_{1}(\mu,\pi ) \leq \sqrt{ \frac{2\alpha } {2 - 1/\alpha }D\!\left (\mu \,\|\,\pi \right )}\,,}$$
where π denotes the stationary measure of {Z t } and \(D\!\left (\cdot \,\|\,\cdot \right )\) is the relative entropy.

Peres and Tetali have conjectured a stronger consequence of coarse Ricci curvature, that a modified log-Sobolev inequality (MLSI) should hold, in analogy with the setting of Markov diffusions. We discuss how our approach suggests a natural attack on the MLSI conjecture.


  1. 1.
    D. Bakry, I. Gentil, M. Ledoux, Analysis and Geometry of Markov Diffusion Operators. Volume 348 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] (Springer, Cham, 2014)Google Scholar
  2. 2.
    S.G. Bobkov, F. Götze, Exponential integrability and transportation cost related to logarithmic Sobolev inequalities. J. Funct. Anal. 163(1), 1–28 (1999)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    R. Bubley, M.E. Dyer, Path coupling: a technique for proving rapid mixing in markov chains, in 38th Annual Symposium on Foundations of Computer Science, FOCS’97, Miami Beach, 19–22 Oct 1997, pp. 223–231Google Scholar
  4. 4.
    H. Djellout, A. Guillin, L. Wu, Transportation cost-information inequalities and applications to random dynamical systems and diffusions. Ann. Probab. 32(3B), 2702–2732 (2004)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    M. Fathi, Y. Shu, Curvature and transport inequalities for markov chains in discrete spaces (2015, preprint). arXiv:1509.07160Google Scholar
  6. 6.
    H. Föllmer, An entropy approach to the time reversal of diffusion processes, in Stochastic Differential Systems, Marseille-Luminy, 1984. Volume 69 of Lecture Notes in Control and Information Sciences (Springer, Berlin, 1985), pp. 156–163Google Scholar
  7. 7.
    H. Föllmer, Time reversal on Wiener space, in Stochastic Processes—Mathematics and Physics, Bielefeld, 1984. Volume 1158 of Lecture Notes in Mathematics (Springer, Berlin, 1986), pp. 119–129Google Scholar
  8. 8.
    J. Lehec, Representation formula for the entropy and functional inequalities. Ann. Inst. Henri Poincaré Probab. Stat. 49(3), 885–899 (2013)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    C. Léonard, A survey of the Schrödinger problem and some of its connections with optimal transport. Discret. Contin. Dyn. Syst. 34(4), 1533–1574 (2014)CrossRefMATHGoogle Scholar
  10. 10.
    D.A. Levin, Y. Peres, E.L. Wilmer, Markov Chains and Mixing Times (American Mathematical Society, Providence, 2009). With a chapter by J.G. Propp and D.B. WilsonGoogle Scholar
  11. 11.
    K. Marton, Bounding \(\overline{d}\)-distance by informational divergence: a method to prove measure concentration. Ann. Probab. 24(2), 857–866 (1996)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    K. Marton, Logarithmic Sobolev inequalities in discrete product spaces: a proof by a transportation cost distance (2015, Preprint). arXiv:1507.02803Google Scholar
  13. 13.
    R. Montenegro, P. Tetali, Mathematical aspects of mixing times in Markov chains. Found. Trends Theor. Comput. Sci. 1(3), x+121 (2006)Google Scholar
  14. 14.
    Y. Ollivier, Ricci curvature of Markov chains on metric spaces. J. Funct. Anal. 256(3), 810–864 (2009)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Y. Ollivier, A survey of Ricci curvature for metric spaces and Markov chains, in Probabilistic Approach to Geometry. Volume 57 of Advanced Studies in Pure Mathematics (The Mathematical Society of Japan, Tokyo, 2010), pp. 343–381Google Scholar
  16. 16.
    M.D. Sammer, Aspects of Mass Transportation in Discrete Concentration Inequalities (ProQuest LLC, Ann Arbor, 2005). Thesis (Ph.D.), Georgia Institute of TechnologyGoogle Scholar
  17. 17.
    C. Villani, Optimal Transport, Old and new. Volume 338 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] (Springer, Berlin, 2009).Google Scholar

Copyright information

© Springer International publishing AG 2017

Authors and Affiliations

  1. 1.Paul G. Allen CenterSeattleUSA

Personalised recommendations