Beyond the Borsuk–Ulam Theorem: The Topological Tverberg Story

  • Pavle V. M. Blagojević
  • Günter M. ZieglerEmail author


Bárány’s “topological Tverberg conjecture” from 1976 states that any continuous map of an N-simplex \(\Delta _{N}\) to \(\mathbb{R}^{d}\), for N ≥ (d + 1)(r − 1), maps points from r disjoint faces in \(\Delta _{N}\) to the same point in \(\mathbb{R}^{d}\). The proof of this result for the case when r is a prime, as well as some colored version of the same result, using the results of Borsuk–Ulam and Dold on the non-existence of equivariant maps between spaces with a free group action, were main topics of Matoušek’s 2003 book “Using the Borsuk–Ulam theorem.”

In this paper we show how advanced equivariant topology methods allow one to go beyond the prime case of the topological Tverberg conjecture.

First we explain in detail how equivariant cohomology tools (employing the Borel construction, comparison of Serre spectral sequences, Fadell–Husseini index, etc.) can be used to prove the topological Tverberg conjecture whenever r is a prime power. Our presentation includes a number of improved proofs as well as new results, such as a complete determination of the Fadell–Husseini index of chessboard complexes in the prime case.

Then, we introduce the “constraint method,” which applied to suitable “unavoidable complexes” yields a great variety of variations and corollaries to the topological Tverberg theorem, such as the “colored” and the “dimension-restricted” (Van Kampen–Flores type) versions.

Both parts have provided crucial components to the recent spectacular counter-examples in high dimensions for the case when r is not a prime power.



We are grateful to Alexander Engström and Florian Frick for excellent observations on drafts of this paper and many useful comments. We want to express our gratitude to Peter Landweber for his continuous help and support in improving this manuscript.


  1. 1.
    A. Adem, R.J. Milgram, Cohomology of Finite Groups, 2nd edn. Grundlehren der Mathematischen Wissenschaften, vol. 309 (Springer, Berlin, 2004)Google Scholar
  2. 2.
    V.I. Arnold, Experimental Mathematics. MSRI Mathematical Circles Library, vol. 16 (MSRI, Berkeley/American Mathematical Society, Providence, 2015)Google Scholar
  3. 3.
    S. Avvakumov, I. Mabillard, A. Skopenkov, U. Wagner, Eliminating higher-multiplicity intersections, III. Codimension 2, Preprint, 16 pages, arXiv:1511.03501. Nov 2015Google Scholar
  4. 4.
    E.G. Bajmóczy, I. Bárány, On a common generalization of Borsuk’s and Radon’s theorem. Acta Math. Hungar. 34, 347–350 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    I. Bárány, P.V.M. Blagojević, G.M. Ziegler, Tverberg’s theorem at 50: extensions and counterexamples. Not. Am. Math. Soc. 73(7), 732–739 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    I. Bárány, Z. Füredi, L. Lovász, On the number of halving planes. Combinatorica 10, 175–183 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    I. Bárány, D.G. Larman, A colored version of Tverberg’s theorem. J. Lond. Math. Soc. 2, 314–320 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    I. Bárány, S.B. Shlosman, A. Szűcs, On a topological generalization of a theorem of Tverberg. J. Lond. Math. Soc. 23, 158–164 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    B.J. Birch, On 3N points in a plane. Math. Proc. Camb. Philos. Soc. 55, 289–293 (1959)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    A. Björner, Topological Methods. Handbook of Combinatorics, vol. 2 (Elsevier, Amsterdam, 1995), pp. 1819–1872Google Scholar
  11. 11.
    A. Björner, L. Lovász, S. Vrećica, R. Živaljević, Chessboard complexes and matching complexes. J. Lond. Math. Soc. 49, 25–39 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    P.V.M. Blagojević, F. Frick, G.M. Ziegler, Tverberg plus constraints. Bull. Lond. Math. Soc. 46, 953–967 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    P.V.M. Blagojević, F. Frick, G.M. Ziegler, Barycenters of polytope skeleta and counterexamples to the topological Tverberg conjecture, via constraints. J. Eur. Math. Soc. (JEMS) (2015, to appear). Preprint, 6 pages, arXiv:1510.07984Google Scholar
  14. 14.
    P.V.M. Blagojević, W. Lück, G.M. Ziegler, Equivariant topology of configuration spaces. J. Topol. 8, 414–456 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    P.V.M. Blagojević, B. Matschke, G.M. Ziegler, Optimal bounds for a colorful Tverberg–Vrećica type problem. Adv. Math. 226, 5198–5215 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    P.V.M. Blagojević, B. Matschke, G.M. Ziegler, A tight colored Tverberg theorem for maps to manifolds. Topol. Appl. 158, 1445–1452 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    P.V.M. Blagojević, B. Matschke, G.M. Ziegler, Optimal bounds for the colored Tverberg problem. J. Eur. Math. Soc. (JEMS) 17, 739–754 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    G.E. Bredon, Equivariant Cohomology Theories. Lecture Notes in Mathematics, vol. 34 (Springer, Berlin/New York, 1967)Google Scholar
  19. 19.
    G.E. Bredon, Topology and Geometry. Graduate Texts in Mathematics, vol. 139 (Springer, New York, 1993)Google Scholar
  20. 20.
    K.S. Brown, Cohomology of Groups. Graduate Texts in Mathematics, vol. 87 (Springer, New York, 1994)Google Scholar
  21. 21.
    A. Dold, Simple proofs of some Borsuk–Ulam results, in Proceedings of the Northwestern Homotopy Theory Conference, ed. by H.R. Miller, S.B. Priddy. Contemporary Mathematics, vol. 19 (1983), pp. 65–69Google Scholar
  22. 22.
    E. Fadell, S. Husseini, An ideal-valued cohomological index theory with applications to Borsuk–Ulam and Bourgin–Yang theorems. Ergod. Theory Dynam. Syst. 8, 73–85 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    A. Flores, Über n-dimensionale Komplexe, die im R 2n+1absolut selbstverschlungen sind, Ergebnisse eines Math. Kolloquiums 6, 4–7 (1932/1934)Google Scholar
  24. 24.
    A. Fomenko, D. Fuchs, Homotopical Topology, 2nd edn. Graduate Texts in Mathematics, vol. 273 (Springer, Cham, 2016)Google Scholar
  25. 25.
    F. Frick, Counterexamples to the topological Tverberg conjecture. Oberwolfach Rep. 12, 318–322 (2015)MathSciNetGoogle Scholar
  26. 26.
    M. Gromov, Singularities, expanders and topology of maps. II: from combinatorics to topology via algebraic isoperimetry. Geom. Funct. Anal. (GAFA) 20, 416–526 (2010)Google Scholar
  27. 27.
    P.M. Gruber, R. Schneider, Problems in geometric convexity, in Contributions to Geometry (Proceedings of the Geometry Symposium, Siegen, 1978), ed. by J. Tölke, J. Wills (Birkhäuser, Basel/Boston, 1979), pp. 255–278Google Scholar
  28. 28.
    B. Grünbaum, Convex Polytopes. Graduate Texts in Mathematics, vol. 221 (Springer, New York, 2003). Second edition prepared by V. Kaibel, V. Klee, G.M. Ziegler (Original edition: Interscience, London, 1967)Google Scholar
  29. 29.
    W.Y. Hsiang, Cohomology Theory of Topological Transformation Groups (Springer, New York/Heidelberg, 1975). Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 85Google Scholar
  30. 30.
    J. Jonsson, Simplicial Complexes of Graphs. Lecture Notes in Mathematics, vol. 1928 (Springer, Berlin, 2008)Google Scholar
  31. 31.
    I. Mabillard, U. Wagner, Eliminating Tverberg points, I. An analogue of the Whitney trick, in Proceedings of 30th Annual Symposium on Computational Geometry (SoCG), Kyoto, June 2014 (ACM, 2014), pp. 171–180Google Scholar
  32. 32.
    I. Mabillard, U. Wagner, Eliminating higher-multiplicity intersections, I. A Whitney trick for Tverberg-type problems, Preprint, 46 pages, Aug 2015, arXiv:1508.02349
  33. 33.
    B.M. Mann, R.J. Milgram, On the Chern classes of the regular representations of some finite groups. Proc. Edinb. Math. Soc. (2) 25, 259–268 (1982)Google Scholar
  34. 34.
    J. Matoušek, Using the Borsuk–Ulam Theorem. Lectures on Topological Methods in Combinatorics and Geometry (Universitext, Springer, Heidelberg, 2003). Second corrected printing 2008Google Scholar
  35. 35.
    J. McCleary, A User’s Guide to Spectral Sequences, 2nd edn. Cambridge Studies in Advanced Mathematics, vol. 58 (Cambridge University Press, Cambridge, 2001)Google Scholar
  36. 36.
    M. Özaydin, Equivariant maps for the symmetric group, Preprint, 17 pages (1987), Google Scholar
  37. 37.
    J. Radon, Mengen konvexer Körper, die einen gemeinsamen Punkt enthalten. Math. Ann. 83, 113–115 (1921)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    K.S. Sarkaria, A generalized van Kampen–Flores theorem. Proc. Am. Math. Soc. 11, 559–565 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    J. Shareshian, M. Wachs, Torsion in the matching complex and chessboard complex. Adv. Math. 212, 525–570 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    A. Skopenkov, A user’s guide to disproof of topological Tverberg conjecture, Preprint 2016, arXiv:1605.05141
  41. 41.
    S. Smale, A Vietoris mapping theorem for homotopy. Proc. Am. Math. Soc. 8, 604–610 (1957)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    P. Soberón, Equal coefficients and tolerance in coloured Tverberg partitions, in Proceedings of 29th Annual Symposium on Computational Geometry (SoCG), Rio de Janeiro, June 2013 (ACM, 2013), pp. 91–96Google Scholar
  43. 43.
    P. Soberón, Equal coefficients and tolerance in coloured Tverberg partitions. Combinatorica 35, 235–252 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    T. tom Dieck, Transformation Groups. Studies in Mathematics, vol. 8 (Walter de Gruyter, Berlin, 1987)Google Scholar
  45. 45.
    H. Tverberg, A generalization of Radon’s theorem. J. Lond. Math. Soc. 41, 123–128 (1966)MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    E.R. Van Kampen, Komplexe in euklidischen Räumen. Abh. Math. Semin. Univ. Hamburg 9, 72–78 (1933)CrossRefzbMATHGoogle Scholar
  47. 47.
    A.Yu. Volovikov, On a topological generalization of Tverberg’s theorem. Math. Notes 59(3), 454–456 (1996)MathSciNetCrossRefGoogle Scholar
  48. 48.
    A.Yu. Volovikov, On the van Kampen-Flores theorem. Math. Notes 59(5), 477–481 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    S. Vrećica, R.T. Živaljević, New cases of the colored Tverberg theorem, in Jerusalem Combinatorics’93, Jerusalem, ed. by H. Barcelo, G. Kalai. Contemporary Mathematics, vol. 178 (American Mathematical Society, 1994), pp. 325–325Google Scholar
  50. 50.
    H. Whitney, The self-intersections of a smooth n-manifold in 2n-space. Ann. Math. 45, 220–246 (1944)MathSciNetCrossRefzbMATHGoogle Scholar
  51. 51.
    G.M. Ziegler, 3N colored points in a plane. Not. Am. Math. Soc. 58(4), 550–557 (2011)MathSciNetzbMATHGoogle Scholar
  52. 52.
    R.T. Živaljević, User’s guide to equivariant methods in combinatorics II. Publications de l’Institut Mathématique 64(78), 107–132 (1998)MathSciNetzbMATHGoogle Scholar
  53. 53.
    R.T. Živaljević, S. Vrećica, The colored Tverberg’s problem and complexes of injective functions. J. Combin. Theory Ser. A 61, 309–318 (1992)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International publishing AG 2017

Authors and Affiliations

  • Pavle V. M. Blagojević
    • 1
    • 2
  • Günter M. Ziegler
    • 3
    Email author
  1. 1.Institute of Mathematics, FU BerlinBerlinGermany
  2. 2.Mathematical Institute SANUBeogradSerbia
  3. 3.Institute of Mathematics, FU BerlinBerlinGermany

Personalised recommendations